Информация по предмету Физика

  • 481. Надёжность систем теплоснабжения
    Другое Физика

    Графики предусматривают режимы теплоснабжения и теплопотребления, необходимость в которых возникает в случаях:

    1. понижения температуры наружного воздуха ниже расчетных значений на срок более 2-3 суток;
    2. непредвиденного возникновения недостатка топлива на источниках тепла;
    3. возникновения недостатка тепловой мощности вследствие аварийной остановки или выхода из строя основного теплогенерирующего оборудования источников тепла (паровых и водогрейных котлов, водоподогревателей и другого оборудования), требующего длительного восстановления;
    4. нарушения или угрозы нарушения гидравлического режима тепловой сети по причине сокращения расхода подпиточной воды из-за неисправности оборудования в схеме подпитки или химводоочистки, а также прекращения подачи воды на источник тепла от системы водоснабжения;
    5. нарушения гидравлического режима тепловой сети из-за аварийного прекращения электропитания сетевых и подпиточных насосов на источнике тепла и подкачивающих насосов на тепловой сети;
    6. повреждений тепловой сети, требующих полного или частичного отключения не резервируемых магистральных и распределительных трубопроводов.
  • 482. Назначение и область применения лазеров
    Другое Физика

    Изобретение лазера стоит в одном ряду с наиболее выдающимися достижениями науки и техники XX века. Первый лазер появился в 1960 г., и сразу же началось бурное развитие лазерной техники. В короткое время были созданы разнообразные типы лазеров и лазерных устройств, предназначенных для решения конкретных научных и технических задач. Лазеры уже успели завоевать прочные позиции во многих отраслях народного хозяйства. Как заметил академик А.П. Александров, “всякий мальчишка теперь знает слово лазер”. И все же, что такое лазер, чем он интересен и полезен? Один из основоположников науки о лазерах квантовой электроники академик Н.Г. Басов отвечает на этот вопрос так: “Лазер это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает несравненно более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметра порядка длины световой волны и получить плотность энергии, превышающую еже на сегодняшний день плотность энергии ядерного взрыва… С помощью лазерного излучения уже удалось достичь самых высоких значений температуры, давления, напряженности магнитного поля. Наконец, лазерный луч является самым емким носителем информации и в этой роли принципиально новым средством ее передачи и обработки”. Широкое применение лазеров в современной науке и технике объясняется специфическими свойствами лазерного излучения. Лазер это генератор когерентного света. В отличии от других источников света (например, ламп накаливания или ламп дневного света) лазер дает оптическое излучение, характеризующееся высокой степенью упорядоченности светового поля или, как говорят, высокой степенью когерентности. Такое излучение отличается высокой монохроматичностью и направленностью. В наши дни лазеры успешно трудятся на современном производстве, справляясь с самыми разнообразными задачами. Лазерным лучом раскраивают ткани и режут стальные листы, сваривают кузова автомобилей и приваривают мельчайшие детали в радиоэлектронной аппаратуре, пробивают отверстия в хрупких и сверхтвердых материалах. Доводка номиналов пассивных элементов микросхем и методы получения на них активных элементов с помощью лазерного луча получили дальнейшее развитие и применяются в производственных условиях. Причем лазерная обработка материалов позволяет повысить эффективность и конкурентоспособность по сравнению с другими видами обработки. В руках хирурга лазерный луч превратился в скальпель, обладающий рядом удивительных свойств. Лазеры широко используются в современных контрольно-измерительных устройствах, вычислительных комплексах, системах локации и связи. Лазеры позволяют быстро и надежно контролировать загрязненность атмосферы и поверхности моря, выявлять наиболее нагруженные участки деталей различных механизмов, определять внутренние дефекты в них. Лазерный луч становится надежным помощником строителей, картографов, археологов, криминалистов. Непрерывно расширяется область применения лазеров в научных исследованиях физических, химических, биологических.

  • 483. Назначение мегаомметра
    Другое Физика

    %20%d0%be%d0%bc%20<http://ru.wikipedia.org/wiki/%D0%9E%D0%BC>%20%d0%b8%20%d0%bc%d0%b5%d1%82%d1%80%20<http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80>)%20-%20%d0%bf%d1%80%d0%b8%d0%b1%d0%be%d1%80%20%d0%b4%d0%bb%d1%8f%20%d0%b8%d0%b7%d0%bc%d0%b5%d1%80%d0%b5%d0%bd%d0%b8%d1%8f%20%d0%b1%d0%be%d0%bb%d1%8c%d1%88%d0%b8%d1%85%20%d0%b7%d0%bd%d0%b0%d1%87%d0%b5%d0%bd%d0%b8%d0%b9%20%d1%81%d0%be%d0%bf%d1%80%d0%be%d1%82%d0%b8%d0%b2%d0%bb%d0%b5%d0%bd%d0%b8%d0%b9.%20%d0%9e%d1%82%d0%bb%d0%b8%d1%87%d0%b0%d0%b5%d1%82%d1%81%d1%8f%20%d0%be%d1%82%20%d0%be%d0%bc%d0%bc%d0%b5%d1%82%d1%80%d0%b0%20<http://ru.wikipedia.org/wiki/%D0%9E%D0%BC%D0%BC%D0%B5%D1%82%D1%80>%20%d1%82%d0%b5%d0%bc,%20%d1%87%d1%82%d0%be%20%d0%b8%d0%b7%d0%bc%d0%b5%d1%80%d0%b5%d0%bd%d0%b8%d0%b5%20%d1%81%d0%be%d0%bf%d1%80%d0%be%d1%82%d0%b8%d0%b2%d0%bb%d0%b5%d0%bd%d0%b8%d1%8f%20%d0%bf%d1%80%d0%be%d0%b8%d0%b7%d0%b2%d0%be%d0%b4%d1%8f%d1%82%d1%81%d1%8f%20%d0%bd%d0%b0%20%d0%b2%d1%8b%d1%81%d0%be%d0%ba%d0%b8%d1%85%20%d0%bd%d0%b0%d0%bf%d1%80%d1%8f%d0%b6%d0%b5%d0%bd%d0%b8%d1%8f%d1%85,%20%d0%ba%d0%be%d1%82%d0%be%d1%80%d1%8b%d0%b5%20%d0%bf%d1%80%d0%b8%d0%b1%d0%be%d1%80%20%d1%81%d0%b0%d0%bc%20%d0%b8%20%d0%b3%d0%b5%d0%bd%d0%b5%d1%80%d0%b8%d1%80%d1%83%d0%b5%d1%82%20(%d0%be%d0%b1%d1%8b%d1%87%d0%bd%d0%be%20500,1000%20%d0%b8%d0%bb%d0%b8%202500%20%d0%92%d0%be%d0%bb%d1%8c%d1%82%20<http://ru.wikipedia.org/wiki/%D0%92%D0%BE%D0%BB%D1%8C%D1%82>).">Мегаомметр (от мега- <http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D0%B3%D0%B0-> ом <http://ru.wikipedia.org/wiki/%D0%9E%D0%BC> и метр <http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80>) - прибор для измерения больших значений сопротивлений. Отличается от омметра <http://ru.wikipedia.org/wiki/%D0%9E%D0%BC%D0%BC%D0%B5%D1%82%D1%80> тем, что измерение сопротивления производятся на высоких напряжениях, которые прибор сам и генерирует (обычно 500,1000 или 2500 Вольт <http://ru.wikipedia.org/wiki/%D0%92%D0%BE%D0%BB%D1%8C%D1%82>).

  • 484. Нанотехнологии и перспективы их развития
    Другое Физика

     

    1. Drexler K. Eric; “Engines of Creation. The Coming Era of Nanotechnology ” \ "Двигатели созидания"; Anchor Books; 1986;
    2. P. Mckeown. Nanotechnology: Step into the Future \ Нанотехнологии: Шаг в Будущее. М.: «Вильямс», 1999. С. 27;
    3. Алексей Шаповалов, Алена Корнышева, Андрей Козенко, Наталья Гриб. Нанотехнологии зарядили энергией. Газета "КоммерсантЪ" № 163(3739) от 08.09.2007;
    4. Гладких Н.Т., Крышталь А.П., Богатыренко С.И. Особенности структурного состояния и диффузионной активности малых частиц. Мателиалы Воронежской конференции по нанотехнологиям (14-20 октября 2007 г.);
    5. Кабаченко Л. А. Тонкоплёночные неорганические материалы. Мателиалы Воронежской конференции по нанотехнологиям (14-20 октября 2007 г.);
    6. Марк Ратнер, Даниэль Ратнер. Нанотехнология: простое объяснение очередной гениальной идеи \ Nanotechnology: A Gentle Introduction to the Next Big Idea. М.: «Вильямс», 2006. С. 240.
    7. Материалы Интернет-энциклопедии Wikipedia (http://Wikipedia.org);
    8. Материалы новостного сайта Науки и разработки - R&D.CNews (http://rnd.cnews.ru/)
    9. Материалы с сайта о нанотехнологиях #1 в России Nanonewsnet (http://www.nanonewsnet.ru)
    10. Публикации нанотехнологического общества «Нанометр» (http://www.nanometer.ru)
    11. Соловьёв М.; “Нанотехнология - ключ к бессмертию и свободе”; Компьютерра; 13.10.97; N41(218);
    12. Хасслахер Б., Тилден М.; “Живые машины”; Природа; №4, 1995. Материалы из Internet, начиная с адреса http://nis-www.lanl.gov/robot/index.htm
  • 485. Нанотехнология
    Другое Физика

    Несмотря на нарастающий уровень трудностей, в течение трех последних десятилетий поддерживается неизменный и очень высокий темп роста всех существенных характеристик в микроэлектронике. Наиболее революционные достижения приближаются к квантовым пределам, положенным самой Природой - когда работает один электрон, один спин, квант магнитного потока, энергии ит.д. Это сулит быстродействие порядка ТГц (~1012 операций в секунду), плотность записи информации ~103 Тбит/см2, что на много порядков выше, чем достигнутые сегодня, а энергопотребление - на несколько порядков ниже. При такой плотности записи в жестком диске размерами с наручные часы можно было бы разместить громадную библиотеку национального масштаба или фотографии, отпечатки пальцев, медицинские карты и биографии абсолютно всех (!) жителей Земли. Действительно, с принципиальной точки зрения для оперирования в двоичной системе исчисления необходимы элементы, которые способны реализовывать два устойчивых (стабильных во времени и не разрушаемых термическими флуктуациями) состояния, соответствующие “0” и “1”, и допускать быстрое переключение между ними. Такие функции может выполнять электрон в двухуровневой системе (например, в двухатомной молекуле - перейти с одного атома на другой). Это реализовало бы заветную мечту - одноэлектронное устройство. К сожалению, пока лучшие современные электронные средства неэкономно “тратят” сотни, тысячи электронов на одну операцию. Другая возможность - переориентировать спин электрона из одного устойчивого состояния в другое (например, воздействуя магнитным полем), чем и занимается спинтроника.

  • 486. Нанотехнология в электротехнических и радиоэлектронных материалах
    Другое Физика

    Для того, чтобы определить структуру кристалла и установить положения атомов в решетке, вещество облучают пучком рентгеновских лучей, электронов или нейтронов. Основное различие этих методов состоит в том, что рентгеновские лучи рассеиваются электронной оболочкой атома; электроны же рассеиваются суммарным потенциалом атома, т.е. в рассеивании участвуют и электронная оболочка атома, и ядро; нейтроны рассеиваются ядрами атомов. Наиболее развит и наиболее широко употребляется для изучения жидкого состояния веществ метод дифракции рентгеновских лучей. Однако его применение сопряжено со значительными экспериментальными трудностями, связанными, в основном, с большими временами экспозиции, иногда достигающими нескольких дней. Такое затруднение отпадает в электронографии, где экспозиции измеряются секундами, и, кроме того, количество исследуемого материала может быть весьма малым. Нейтронография, по сравнению с рентгеновским и электронографическим методами, выигрывает в том, что факторы рассеивания для нейтронов изотропны, т.е. отсутствует угловая зависимость атомных факторов рассеивания нейтронов. Недостатком методов электронографии и нейтронографии является трудность учета фона.

  • 487. Нарушение надёжности работы котлоагрегата: расслоение пароводяной смеси в экономайзере
    Другое Физика

     

    1. Трембовля, В. И. Теплотехнические испытания котельных установок / В. И. Трембовля, Е. Д. Финглер, А. А. Авдеева. - 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1991. 416 с.
    2. Гатеев С.Б. Теплотехнические испытания котельных установок // С.Б. Гатеев М.: Энергоатомиздат 1959 600с.
    3. Баранов, П.А. Предупреждения аварий паровых котлов / П.А. Баранов // М. Энергоавтомиздат. 1991. 272с
    4. Назмеев, Ю. Г. Теплообменные аппараты ТЭС / Ю. Г. Назмеев, В. М. Лавыгин. - М.:Энергоатомиздат, 1988. 288с.
    5. Парилов, В.А. Испытание и наладка паровых котлов / В.А. Парилов, С.Г. Ушаков // Энергоавтомиздат.-1986.-320с.
    6. Эстеркин, Р.И. Промышленные котельные установки / Р.И. Эстеркин // Энергоатомиздат.-1985-400с.
    7. Кемельман Д. Н., .Наладка котлоагрегатов (Справочник)/Д.Н. Кемельман , Н.Б. Эскин //"Энергия" Москва 1976
    8. Чудаков Е.А. Машиностроение. Энцеклопидический справочник. Том 13 / Е.А Чудаков// Машиностроение 730с.
    9. Инструкция по продлению срока безопасной эксплуатации паровых котлов и водогрейных котлов СО 153-34.17.469-2003
    10. Рекомендации по нормированию труда на работы по ремонту теплоэнергетического оборудования и тепловых сетей. Москва 2005 г.
  • 488. Насосные установки
    Другое Физика

    Дросселирование осуществляется прикрытием задвижки на напоре, при этом (рис. 1, Б) характеристика магистрали перемещается влево (до точки РТ') при неизменной угловой скорости насоса (?ном). При новом положении рабочей точки (РТ') производительность (Q') уменьшится, а напор (Н') увеличится (теоретически). Реально часть напора (?Н') теряется на регулирующем устройстве, а следовательно, фактический напор (Нф') тоже уменьшится. Расчеты показывают, что уменьшение производительности (Q) в два раза приводит к снижению КПД насоса в 4 раза и увеличивает потери мощности до 38 % от номинальной мощности ЭД.

  • 489. Натяжение жидкости. Принцип работы сталагмометра
    Другое Физика

    Их равнодействующая направлена внутрь жидкости. Правда, над поверхностью жидкости тоже есть молекулы пара, но их значительно меньше (плотность пара в обычных условиях примерно в 1000 раз меньше плотности жидкости), поэтому силы со стороны молекул пара много меньше, чем силы притяжения к молекулам жидкости. Таким образом, на молекулы поверхностного слоя действует сила, стремящаяся перевести их вглубь жидкости. Благодаря этому молекулы поверхностного слоя обладают большой потенциальной энергией по сравнению с «глубинными» молекулами. Следствием этого является то, что при отсутствии каких-либо других сил, действующих на жидкость, она принимает такую форму, при которой ее поверхность является минимальной (при данном объеме), т.е. форму шара. При такой форме максимально возможное число молекул находится не на поверхности, а внутри объема жидкости. В реальных условиях жидкость находится не только под действием внутренних молекулярных сил. На жидкость, кроме того, действуют сила тяжести и сила взаимодействия между молекулами жидкости и твердого тела, с которым жидкость граничит. Поэтому жидкость принимает форму шара лишь в тех случаях, когда мала сила тяжести (т.е. когда мала масса жидкости), а если жидкость граничит с твердым телом, то должна быть мала также и сила взаимодействия молекул жидкости с молекулами твердого тела по сравнению с межмолекулярными силами в самой жидкости.

  • 490. Наука - Физика
    Другое Физика

    Ускорение тела зависит от величин, характеризующих действие других тел на данное тело, а также от величин, определяющих особенности этого тела. Механическое действие на тело со стороны других тел, которое изменяет скорость движения данного тела, называют силой. Она может иметь разную природу (сила тяжести, сила упругости и т.д.).Изменение скорости движения тела зависит не от природы сил, а от их величины. Поскольку скорость и сила - векторы, то действие нескольких сил складывается по правилу параллелограмма. Свойство тела, от которого зависит приобретаемое им ускорение, есть инерция, измеряемая массой. В классической механике, имеющей дело со скоростями, значительно меньшими скорости света, масса является характеристикой самого тела, не зависящей от того, движется оно или нет. Масса тела в классической механике не зависит и от взаимодействия тела с другими телами. Это свойство массы побудило Ньютона принять массу за меру материи и считать, что величина ее определяет количество материи в теле. Таким образом, масса стала пониматься как количество материи. (Впоследствии, с созданием теории относительности, выяснится, что масса тела не является постоянной величиной, а зависит от скорости его движения, его энергии. Так, чем выше температура тела, тем больше его масса. Т.е. масса тела характеризует и состояние тела. Поэтому понятие количества материи из современного научного обихода исчезло как не имеющее смысла). Количество материи доступно измерению, будучи пропорциональным весу тела. Вес - это сила, с которой тело действует на опору, препятствующую его свободному падению. (Числено вес равен произведению массы тела на ускорение силы тяжести. Вследствие сжатия Земли и ее суточного вращения вес тела изменяется с широтой и на экваторе на 0,5% меньше, чем на полюсах). Поскольку масса и вес строго пропорциональны, оказалось возможным практическое измерение массы или количества материи. Понимание того, что вес является переменным воздействием на тело, побудило Ньютона установить и внутреннюю характеристику тела - инерцию, которую он рассматривал как присущую телу способность сохранять равномерное прямолинейное движение, пропорциональную массе. Массу как меру инерции можно измерять с помощью весов, как это делал Ньютон. В состоянии невесомости массу можно измерять по инерции. Измерение по инерции является общим способом измерения массы. Но инерция и вес являются различными физическими понятиями. Их пропорциональность друг другу весьма удобна в практическом отношении - для измерения массы с помощью весов. Таким образом, установление понятий силы и массы, а также способа их измерения позволило Ньютону сформулировать второй закон механики. Итак, масса есть одна из основных характеристик материи, определяющая ее инертные и гравитационные свойства - масса как мера инертности по отношению к действующей на него силе (масса покоя) и масса как источник поля тяготения эквивалентны.

  • 491. Наука в серебряном веке
    Другое Физика

    Использованная литература:

    1. Тихонов С.Н. «Основы электрорадиотехники» Мин. Обороны СССР 1959 г.
    2. Мякишев Г.Я., Буховцев Б.Б. «Молекулярная физика» М. «Просвещение» 1990 г.
    3. Рудзитис Г.Е., Фельдман Ф.Г. «Русские ученные химики» М. «Просвещение» 1997 г.
    4. Долуцкий И.И. «Отечественная история XX века» М. «Мнемозина» 1994 г.
    5. Вергинский В.С., Хотеенков В.Ф. «Очерки истории науки и техники 1870-1917 гг.» М. «Просвещение» 1988 г.
  • 492. Научная работа по физике на тему "Баллистическое движение тел"
    Другое Физика
  • 493. Научно-технический прогресс газотурбинных установок магистральных газопроводов
    Другое Физика

    В 1941 г. началась сборка двигателя РД-1, приостановленная с началом Великой Отечественной войны. В 1942 г. узлы РД-1 и документация были вывезены в ЦИАМ. Работы в ЦИАМ по ТРД под руководством А.М. Люльки возобновились только в 1943 году (А.М. Люлька некоторое время работал на танковом заводе в Челябинске и в КБ Болховитинова). Двигатель был модернизирован его тяга увеличилась до 1200 кгс и получил обозначение С-18 (стендовый). В марте 1944 г. было получено задание от Наркомата на изготовление пяти экземпляров С-18, а коллектив А.М. Люльки был переведён в НИИ-1, где сосредотачивались все работы по реактивной технике. В сентябре 1944 г. двигатель С-18 собран и испытан. В процессе первых испытаний выявилось большое количество дефектов, наиболее разрушительным из которых был помпаж компрессора. К концу войны в НИИ-1 появились трофейные немецкие двигатели Юмо-004 и BMW-003 с тягой 900 и 800 кгс, однако довод и развитие ТРД С-18 были продолжены, и на его базе был спроектирован ТРД ТР-1 с тягой 1350 кгс. Копирование ТРД Юмо и BMW было поручено другим ОКБ. После успешного испытания двигателя С-18 в конце 1945 г. работы по TP-1 форсировались. К их изготовлению малой серией был подключен завод № 45 (ММПП "Салют") и было организовано новое конструкторское бюро ОКБ-165, которое возглавил А.М. Люлька. В августе 1946 г. ТР-1 поставлен на испытания. В феврале 1947 г. проведены государственные испытания получена тяга 1290 кгс и ресурс 20 часов. В течение 1948-1950-х гг. создаётся ряд модификаций с последовательно увеличивающейся тягой, вплоть до тяги 5000 кгс на двигателе ТР-3А, названном АЛ-5. Двигатели изготовлялись малой серией и устанавливались на опытных самолётах Ильюшина, Сухого, Лавочкина. 1950-е гг. под руководством А.М. Люльки был создан ряд ТРД типа АЛ-7Ф с = 9.. .10 и К в классе тяг 6500…10000 кгс.

  • 494. Научные открытия Исаака Ньютона
    Другое Физика

    Главные годы жизни Ньютона прошли в стенах колледжа Святой Троицы Кембриджского университета. Он любил одиночество, его голос слышали редко. Он терпеть не мог споров, особенно научных. А размышлять и писать он любил. В своем уединение этот тихий, молчаливый человек совершил переворот в отношениях человека и природы, в нашем миропонимании. Он создал язык классической науки, на котором она думает и говорит уже три века. Гений науки был достойным сыном своего времени. Отстаивая права Кембриджского университета, он один посмел сказать Якову II, что закон выше короля. Новые деньги, отчеканенные Ньютоном в невероятно короткие сроки, способствовали процветанию британской экономики в течение всего XVIII столетия. Старый Исаак Ньютон принимал на Монетном дворе Петра I. Незадолго до смерти сэр Исаак получил известие, что русский царь основал-таки в Петербурге Императорскую Академию наук и художеств. Это тоже можно считать наследием Ньютона.

  • 495. Негативное воздействие энергосберегающих ламп
    Другое Физика

    Ртуть очень ядовита. Даже разбитый медицинский термометр может вызвать мгновенное отравление. Металлическая ртуть ядовита настолько же, насколько ядовит любой другой тяжелый металл (например, медь). В средние века алхимики даже принимали ртуть во внутрь в качестве «лечебных» пилюль и, тем не менее, оставались живы. Следует оговориться, что при попадании в пищеварительную систему относительно безопасна именно металлическая ртуть, а не ее соли! Пресловутая же «ядовитость» обусловлена её парами, содержащимися в воздухе. При температуре 18°С начинается интенсивное испарение ртути в атмосферу, вдыхание такого воздуха способствует её накоплению в организме откуда она уже не выводится (как и другие тяжелые металлы). Однако чтобы накопить серьезную долю ртути в организме, необходимо в течение нескольких месяцев или лет регулярно пребывать в помещении с серьезным превышением ПДК этого металла в воздухе.

  • 496. Нейроподобный элемент \нейрон\
    Другое Физика

    Нейроподобная сеть представляет собой совокупность нейроподобных элементов, определенным образом соединенных друг с другом и с внешней средой. Входной вектор (координирующий входное воздействие или образ внешней среды) подается на сеть путем активации входных нейроподобных элементов. Множество выходных сигналов нейронов сети y1, y2, ...,yN называют вектором выходной активности, или паттерном активности нейронной сети. Веса связей нейронов сети удобно представлять в виде матрицы W, где ij - вес связи между i- и j-м нейронами. В процессе функционирования (эволюции состояния) сети осуществляется преобразование входного вектора в выходной, т.е. некоторая переработка информации, которую можно интерпретировать, например, как функцию гетеро- или автоассоциативной памяти. Конкретный вид выполняемого сетью преобразования информации обусловливается не только характеристиками нейроподобных элементов, но и особенностями ее архитектуры, т.е. той или иной топологией межнейронных связей, выбором определенных подмножеств нейроподобных элементов для ввода и вывода информации или отсутствием конкуренции, направлением и способами управления и синхронизации информационных потоков между нейронами и т.д.

  • 497. Нейроподобный элемент нейрон
    Другое Физика

    Нейроподобная сеть представляет собой совокупность нейроподобных элементов, определенным образом соединенных друг с другом и с внешней средой. Входной вектор (координирующий входное воздействие или образ внешней среды) подается на сеть путем активации входных нейроподобных элементов. Множество выходных сигналов нейронов сети y1, y2,..., yN называют вектором выходной активности, или паттерном активности нейронной сети. Веса связей нейронов сети удобно представлять в виде матрицы W, где w ij - вес связи между i- и j-м нейронами. В процессе функционирования (эволюции состояния) сети осуществляется преобразование входного вектора в выходной, т.е. некоторая переработка информации, которую можно интерпретировать, например, как функцию гетеро- или автоассоциативной памяти. Конкретный вид выполняемого сетью преобразования информации обусловливается не только характеристиками нейроподобных элементов, но и особенностями ее архитектуры, т.е. той или иной топологией межнейронных связей, выбором определенных подмножеств нейроподобных элементов для ввода и вывода информации или отсутствием конкуренции, направлением и способами управления и синхронизации информационных потоков между нейронами и т.д.

  • 498. Некоторые парадоксы теории относительности
    Другое Физика

    Совмещая первое событие с моментом t=0 и началом отсчета системы и вводя симметричные обозначения координат и времени интервал между вторым и первым событием можно написать в виде (o) Четырехмерная геометрия, определяемая инвариантностью интервала этого уравнения, качественно отличается от обычной евклидовой геометрии, определяемой инвариантностью расстояния, т.е. (m) или от простого четырехмерного обобщения геометрии, где инвариантом считается (n) В евклидовых геометриях, определяемых (m) или (n), квадрат "расстояния" всегда положителен, и, следовательно, "расстояние" является действительной величиной. Но в четырехмерной геометрии, определяемой интервалом (о), являющимся аналогом "расстояния", квадрат интервала может быть положителен, отрицателен или равным нулю. Соответственно, в этой псевдоевклидовой геометрии интервал может быть действительной или мнимой величиной. В частном случае он может быть равен нулю для несовпадающих событий.

  • 499. Нелинейные многоволновые взаимодействия в упругих системах
    Другое Физика

    Явление резонанса играет ключевую роль в динамике большинства физических систем. Интуитивно, резонанс ассоциируется с одним частным случаем силового возбуждения линейных колебательных систем. Такое возбуждение сопровождается с более или менее скорым ростом амплитуды колебаний при достаточной близости одной из собственных частот колебаний системы к частоте внешнего периодического возмущения. В свою очередь, в случае так называемого параметрического резонанса возникают некоторые рациональные соотношения между собственными частотами системы и частотой параметрического возмущения. Таким образом, резонанс можно проще всего классифицировать, согласно выше приведенному эскизу, по его порядку, начиная с первого, , если включить в рассмотрение и линейные и нелинейные динамические системы. Поэтому, в общем случае, понятие резонанса в колебательных системах может быть связано с физическим явлением, которое характеризуется накоплением энергии одним или несколькими колебательными объектами за счет энергии другой группы колебательных объектов, когда все колебательные процессы объединены некоторым пространственно-временным сродством. Так называемые нерезонансные процессы, такие как кросс-взаимодействия и самовоздействие, также могут быть включены в подобное определение, но со специальной оговоркой, касающейся их специфических динамических свойств.

  • 500. Неоценимый вклад ученых-физиков СССР в Великую Победу
    Другое Физика

    Ученых страны ждало серьезное испытание: враг наступал; его армии неумолимо двигались на восток. С первых дней войны по решению ЦК партии и Государственного Комитета Обороны началась эвакуация научных учреждений и вузов, прежде всего из прифронтовой полосы в отдаленные от нее места. Она была объявлена важнейшим государственным делом: нужно было во что бы то ни стало сохранить и ученых, и научную базу страны. Поэтому физические, физико-технические, химические научные институты и вузы, а также президиум Академии наук были вывезены в эвакуацию в Казань. Лозунг «Все для фронта, все для победы!» стал ведущим для всей научно-исследовательской работы. Химики также внесли значительный вклад для нужд фронта и тыла. Они содействовали развитию металлургической, машиностроительной и оборонной промышленности, создавали новые металлы и сплавы для брони, пластмассы, новые составы для зажигательных смесей, топливо для ракетных установок, новые медицинские и технические препараты, участвовали в поиске новых видов сырья. Академик Ю.Г. Мамедалиев в 1941 г. выполнил работу по синтезу толуола (метилбензола). Его использовали для получения тротила. Тротил с щелочами образует соли, которые легко взрываются при механических воздействиях. Материал использовали для производства взрывчатых веществ, зарядов к разрывным снарядам, подводным минам, торпедам. Во время Второй мировой войны его было произведено около 1 млн. тонн. Знаменитый авиаконструктор С.А.Лавочкин писал: «Я не вижу моего врага - немца-конструктора, который сидит над своими чертежами ... в глубоком убежище. Но, не видя его, я воюю с ним ... Я знаю, что бы ни придумал немец, я обязан придумать лучше. Я собираю всю мою волю и фантазию, все мои знания и опыт ... чтобы в день, когда два новых самолета - наш и вражеский - столкнутся в военном небе, наш оказался победителем». Так думал не только С.А.Лавочкин, но и каждый создатель боевой отечественной техники.