Информация по предмету Физика

  • 161. Гидроаккумулирующие электростанции и перспектива их развития
    Другое Физика

    Электроэнергия, вырабатываемая недогруженными электростанциями энергосистемы (в основном в ночные часы суток), используется ГАЭС для перекачивания насосами воды из нижнего водоёма в верхний, аккумулирующий бассейн. В периоды пиков нагрузки вода из верхнего бассейна по трубопроводу подводится к гидроагрегатам ГАЭС, включенным на работу в турбинном режиме; выработанная при этом электроэнергия отдаётся в сеть энергосистемы, а вода накапливается в нижнем водоёме. Количество аккумулированной электроэнергии определяется ёмкостью бассейнов и рабочим напором ГАЭС. Верхний бассейн ГАЭС может быть искусственным или естественным (например, озеро); нижним бассейном нередко служит водоём, образовавшийся вследствие перекрытия реки плотиной. Одно из достоинств ГАЭС состоит в том, что они не подвержены воздействию сезонных колебаний стока. Гидроагрегаты ГАЭС в зависимости от высоты напора оборудуются поворотно-лопастными, диагональными, радиально-осевыми и ковшовыми гидротурбинами. Время пуска и смены режимов работы ГАЭС измеряется несколькими минутами, что предопределяет их высокую эксплуатационную манёвренность. Регулировочный диапазон ГАЭС, из самого принципа её работы, близок двукратной установленной мощности, что является одним из основных её достоинств. ГАЭС целесообразно строить вблизи центров потребления электроэнергии, т.к. сооружение протяжённых линий электропередачи для кратковременного использования экономически не выгодно. Обычный срок сооружения ГАЭС около 3 лет.

  • 162. Гидрогазодинамика
    Другое Физика

    При гидравлическом расчете трубопровода существенную роль играют местные гидравлические сопротивления. Они вызываются фасонными частями, арматурой и другим оборудованием трубопроводных сетей, которые приводят к изменению величины и направления скорости движения жидкости на отдельных участках трубопровода (при расширении или сужении потока, в результате его поворота, при протекании потока через диафрагмы, задвижки и т.д.), что всегда связано с появлением дополнительных потерь напора. В водопроводных магистральных трубах потери напора на местные сопротивления обычно весьма не велики (не более 10-20% потерь напора на трение).

  • 163. Гидродинамика
    Другое Физика

    Диэлектрическое нагревание токами высокой частоты применяется при нагревании диэлектриков (пластмасс, резины, дерева и др.). Нагреваемое тело помещают между обкладками конденсатора. Под действием переменного электрического тока-молекулы диэлектрика колеблются со скоростью, соответствующей частоте электрического поля, при этом в результате внутреннего трения между молекулами выделяется тепло. Количество выделяющегося тепла пропорционально квадрату напряжения и частоте тока. Нагревание ведут обычно токами высокой частоты (0,5106100106 Гц) при напряженности электрического поля 1000- -2000 В/см. Для получения токов высокой частоты пользуются ламповыми генераторами. Диэлектрическое нагревание отличается большими преимуществами: непосредственное выделение тепла во всей толщине нагреваемого материала (обеспечивающее равномерный прогрев обрабатываемого материала), большая скорость нагревания, возможность нагревания только отдельных частей материала, легкость регулирования процесса нагревания и возможность полной автоматизации его.

  • 164. Гидродинамика вязкой жидкости
    Другое Физика

    Итак, переход к турбулентности связан с неустойчивостью, а неустойчивость, в свою очередь, с возникновением и развитием возмущений. Откуда же в реальной физической системе, какой является движущая жидкость, могут зародиться возмущения? Источников возмущений очень много. Прежде всего реальная установка (канал с движущейся жидкостью) находится на лабораторном столе, которому передаются колебания от стен и пола здания результат сотрясения из-за проехавшей по соседству машины или, может быть, даже слабого сейсмического возмущения. Далее, вход жидкости в канал практически никогда не бывает идеально гладким, на входе в жидкость вносятся входные возмущения, они движутся вдоль жидкости вместе с ней и могут при благоприятных (неблагоприятных?) условиях нарастать. Стенки канала почти никогда не бывают лишены неровностей, шероховатостей. Обтекающий эти шероховатости поток непрерывно возмущается. Этот список можно было бы продолжать долго. Но есть источник возмущений, принципиально неустранимый. Это так называемые флуктуации. Когда мы говорим, например, что в данной точке потока плотность постоянна, это лишь означает, что она постоянна в среднем. Около этого среднего значения происходят малые, но макроскопические отклонения в ту или другую сторону. Они приводят к макроскопическим (малым) отклонениям (флуктуациям) давления, температуры и скорости. Флуктуации, таким образом, являются постоянно действующим источником возмущений, в принципе неустранимым.

  • 165. Гидростатическое давление
    Другое Физика

    Гидростатическое давление измеряют в кг на 1 кв. см. Большие давления выражают часто в атмосферах, принимая за 1 атмосферу давление в 76 см столбартути <http://ru.wikipedia.org/wiki/%D0%A0%D1%82%D1%83%D1%82%D1%8C>, при температуре 0° под широтой, где ускорение силы тяжести <http://ru.wikipedia.org/wiki/%D0%A3%D1%81%D0%BA%D0%BE%D1%80%D0%B5%D0%BD%D0%B8%D0%B5_%D1%81%D0%B8%D0%BB%D1%8B_%D1%82%D1%8F%D0%B6%D0%B5%D1%81%D1%82%D0%B8> = 0,0635 кг на 1 кв. см = 6,21×106 дин на 1 кв. см. 1 атмосфера = 1,0333 кг на 1 кв. см = 1,0136×106 дин на 1 кв. см для широты Парижа или 1,0132×106 для широты в 45°.

  • 166. Гидроэлектростанции и гидросооружения
    Другое Физика

    Например, в 1892 г. Н.Н. Бенардос предложил организовать электроснабжение Петербурга путем утилизации энергии Невы на специально построенных электрических станциях (мощностью до 20 000 л. с). В 1893 г. Н.С. Лелявский разработал схему использования гидроэнергии Днепровских порогов. В.Н. Чиколев, пропагандировавший еще в начале 80-х годов XIX в. использование водяных турбин в качестве первичных двигателей электростанций, в 1896 г. совместно с Р.Э. Классоном построил в Петербурге на р. Охта гидроэлектростанцию и линию электропередач трехфазного тока.В течение 90-х годов XIX в. гидроэнергия играет все более заметную роль в электроснабжении. С каждым годом возрастало число крупных гидроэлектростанций. В конце XIX в. были сооружены: Рейнфельдская гидроэлектростанция (Германия, 1898 г.) мощностью 16 800 кВт при напоре воды 3,2 м, Ниагарская (США) мощностью 50 тыс. л. с. при напоре 41,2 м, Жонажская (Франция, 1901 г.) мощностью 11 200 л. с. В начале второго десятилетия XX в. были пущены в ход гидроэлектростанции Аугст-Виллен (Германия, 1911 г.) мощностью 44 тыс. л. с, Кеокук (США, 1912 г.) мощностью 180 тыс. л. с. Качество турбинного оборудования было еще недостаточно высоким, КПД колебался в пределах 0,8-0,84. Несовершенными были формы и конструкции гидросооружений, что объясняется недостаточной изученностью вопросов инженерной гидравлики и гидротехники. Поэтому некоторые ГЭС, построенные в эти годы, в последующем подверглись более или менее серьезной реконструкции.В дореволюционной России гидроэлектростанций было мало. Первой была установка на Охтинском заводе в Петербурге мощностью 350 л. с. (1896 г.). Кроме того, действовали ГЭС «Белый уголь» на р. Подкумок (1903 г.) мощностью 990 л. с, напряжением 8000 В, Гиндукушская ГЭС (1909 г.) на р. Мургаб, мощностью 1 590 л. с. Кроме того, действовали несколько более мелких по мощности (Сашнинская, Аллавердинская, Тургусунская, Сестрорецкая и др.). Общая мощность гидростанций дореволюционной России составляла 8000 кВт. В настоящее время в России работают 102 ГЭС мощностью свыше 100 МВт. Общая установленная мощность гидроагрегатов на ГЭС составляет примерно 45 млн. кВт (5 место в мире), а выработка порядка 165млрд кВтч/год (также 5 место) в общем объеме производства электроэнергии, а в России доля ГЭС не превышает 21%.

  • 167. Гидроэнергетический комплекс Сибири
    Другое Физика

    В 17 в. в России единственной энергетической базой развивавшегося мануфактурного производства были водяные колёса. Замечательные успехи в строительстве вододействующих или гидросиловых установок в России были достигнуты в 18 в. в горнорудной промышленности на Урале и Алтае. Гидросиловые установки были неотъемлемой частью металлургического, лесопильного, бумажного, ткацкого и др. производств. К концу 18 в. в России было уже около 3000 мануфактур, использовавших водную энергию рек. Были созданы уникальные для того времени гидросиловые установки. Например, в 1765 водный мастер К.Д.Фролов соорудил на р.Корбалиха (Алтай) гидросиловую установку, в которой вода подводилась к рабочему колесу по специальному каналу. Образовавшийся перепад между каналом и рекой использовался в установке для вращения водяного колеса, которое при помощи системы остроумно осуществленных передач приводило в движение группу машин, в том числе предложенный Фроловым внутризаводской транспорт в виде системы вагонеток. В 1787 г. Фролов завершил строительство деривационной четырехступенчатой подземной гидросиловой установки на р.Змеевка, не имевшей себе равных как по схеме, так и по масштабу и уровню технического исполнения. Самые мощные водяные колёса диаметром 9,5 м, шириной 7,5 м были установлены в конце 18 в. в России на р.Нарова для Кренгольмской мануфактуры. При напоре 5 м они развивали мощность до 500 л. с. С появлением паровой машины примитивные вододействующие установки начали утрачивать своё значение. Для того чтобы конкурировать с паровой машиной, необходимо было иметь более совершенные двигатели, чем громоздкие и сравнительно маломощные водяные колёса. В 1-й половине 19 в. была изобретена гидротурбина, открывшая новые возможности перед гидроэнергетикой. С изобретением электрической машины и способа передачи электроэнергии на значительные расстояния гидроэнергетика приобрела новое значение уже как направление электроэнергетики; началось освоение водной энергии путём преобразования её в электрическую на гидроэлектрических станциях (ГЭС).

  • 168. Гипотеза Де Бройля
    Другое Физика

    Первое экспериментальное подтверждение гипотезы де Брой-ля подучили в 1927 г. независимо друг от друга американские физики К. Д. Дэвиссон и Л. X. Джермер и английский физик Д. П. Томсон. Дэвиссон и Джермер изучали отражение электронных пучков от поверхности кристаллов на установке, схема которой изображена на рисунке 1. Перемещая приемник электронов по дуге окружности, центр которой находится в месте падения электронного пучка на кристалл, они обнаружили сложную зависимость интенсивности отраженного пучка от угла рис. 2. Отражение излучения только под определенными углами означает, что это излучение представляет собой волновой процесс и его избирательное отражение есть результат дифракции на атомах кристаллической решетки. По известным значениям постоянной кристаллической решетки и d угла дифракционного максимума можно по уравнению Вульфа Брэггов

  • 169. Гипотезы о природе шаровой молнии
    Другое Физика

    Анализ описаний очевидцев показал, что ШМ:

    • плазменное образование, имеющее температуру в широких пределах 500...1500°С (судя по следам оплавления металлических вещей, нагреванию воды в сосудах, ожогам деревьев во время разрушения ШМ). Вместе с тем излучение тепла и лучистой энергии до ее разрушения настолько мало, что она не оставляет никаких следов даже при пролете почти вплотную;
    • шаровидное светящееся образование с четкой границей, отделяющей ее от окружающей среды. Движение ШМ не приводит к размыванию этой границы в воздухе (как при горении, например). Оболочка ШМ устойчива и упруга в условиях сильной деформации (при проникновении через щели и отверстия), причем шаровидная форма образования немедленно полностью восстанавливается;
    • имеет большой разброс величин энергий (разрушены, например, кирпичная дымовая труба, угол кирпичного дома; образовано углубление в асфальте; нагрета вода в ведре и т.д.);
    • способна иметь большой величины электрический заряд, какой не может нести обычное тело такого же объема и массы. (Его силы достаточно, чтобы убить человека, животное, расплавить провода в радиоприемнике или в телефоне, как при коротком замыкании большого тока).
    • имеет аномально большое время жизни, колеблющееся от 1 сек до 2 мин. У обычной плазмы оно составляет примерно 103 сек, а рекомбинация ионов длится всего 1010 сек (!)
    • движется таким образом, что можно сделать заключение: направление ее движения зависит не только от направления ветра, но в большей степени от напряженности магнитного поля, поскольку она либо выталкивается в область с пониженной напряженностью (закрытое помещение), либо движется по эквипотенциальным линиям магнитного поля (огибает строения, ландшафт на определенном расстоянии). При этом вертикальное электрическое поле на ее движение никак не влияет;
    • является продуктом линейной молнии (далее ЛМ), либо другого электрического разряда.
  • 170. Гіперзвук та його властивості
    Другое Физика

    Для металів характерні ті ж ефекти, що і для напівпровідників, але через велику загасання гіперзвуку ці ефекти стають помітними лише при темп-pax нижче 10 K, коли вклад в затухання за рахунок коливань решітки стає незначним. Поширення пружної хвилі в металі викликає рух покладе. іонів, і якщо електрони не встигають слідувати за ними, то виникають електричні. поля, які, впливаючи на електрони, створюють електронний струм. У разі поздовжньої хвилі зміни щільності створюють просторовий заряд,який безпосередньо генерує електричні. поля. Для поперечних хвиль зміни щільності відсутні, але зміщення положення іонів викликають осцилюючі магнітного поля, що створюють електричне поле, що діє на електрони. Таким чином, електрони отримують енергію від пружної хвилі і втрачають її в процесах зіткнення, відповідальних за електричний опір. Електрони релаксують шляхом зіткнень з гратами покладених іонів (домішками, тепловими фононами і т. д.), в результаті чого частина енергії повертається назад до пружної хвилі, якою переноситься гратами покладених іонів. Згасання гіперзвуку в чистих металах при низьких температуpax пропорційно частоті. Якщо метал - надпровідник, то при температурі переходу в надпровідний стан електронне поглинання різко зменшується. Це пояснюється тим, що з гратами, а отже, і з пружною хвилею взаємодіють тільки нормальні електрони провідності, число яких брало зменшується з пониженням температури, а надпровідні електрони, число яких при цьому зростає, в поглинанні гіперзвуку не беруть участь. Руйнування надпровідності зовнішнім магнітним полем призводить до різкого зростання поглинання.

  • 171. Гістерезис феромагнетиків
    Другое Физика

    На рис. 4а зображений феромагнетик, що складається з одного домена. У цьому випадку в зовнішньому просторі виникає магнітне поле, що містить в собі певну енергію. На рис. 4б зображені два домени з протилежним напрямком намагніченості. Зовнішнє магнітне поле тут зменшується зі збільшенням відстані швидше, ніж у випадку а, і енергія, що міститься в полі, виявляється меншою. У випадку, показаному на рис. 4в, магнітне поле практично існує тільки в безпосередній близькості від поверхні магнетика й енергія поля ще менша. Накінець, на рис. 4г зображений випадок, коли в зовнішньому просторі магнітного поля зовсім немає. Тут існують «замикаючі» домени у формі тригранних призм, бічні поверхні яких складають кут 45° з вектором намагніченості. У наслідок цього магнітний потік проходить винятково всередині феромагнетика, він замикається граничними доменами, чим і обумовлена їхня назва - замикаючі домены. Стан г енергетично більш вигідний, ніж попередні стани, і тому феромагнетик, що знаходиться, наприклад, у стані а, буде прагнути перейти в стан г. Нарешті, на мал. 4д показана ціла сукупність доменів разом із замикаючими їх доменами, де також немає зовнішнього поля. Подібна форма доменів дійсно спостерігається на досліді. Таким чином, розбивка феромагнетика на домени відбувається тому, що при утворенні доменних структур енергія феромагнетика зменшується (Л.Д. Ландау й Е.М. Лифшиц).

  • 172. Глаз как оптическая система
    Другое Физика

    По своему устройству глаз как оптическая система сходен с фотоаппаратом. Роль объектива выполняет хрусталик совместно с преломляющей средой передней камеры и стекловидного тела. Изображение получается на светочувствительной поверхности сетчатки. Наводка на резкость изображения осуществляется путем аккомодации. Наконец, зрачок играет роль изменяющейся по диаметру диафрагмы. Способность глаза к аккомодации обеспечивает возможность получения на сетчатке резких изображений предметов, находящихся на различных расстояниях. Нормальный глаз в спокойном состоянии, т. е. без какого-либо усилия аккомодации, дает на сетчатке отчетливое изображение удаленных предметов (например, звезд). С помощью мышечного усилия, увеличивающего кривизну хрусталика и, следовательно, уменьшающего его фокусное расстояние, глаз осуществляет наводку на нужное расстояние. Наименьшее расстояние, на котором нормальный глаз может отчетливо видеть предметы, меняется в зависимости от возраста от 10 см (возраст до 20 лет) до 22 см (возраст около 40 лет). В более пожилом возрасте способность глаза к аккомодации еще уменьшается: наименьшее расстояние доходит до 30 см и более возрастная дальнозоркость.

  • 173. Глобальная история Вселенной (физика)
    Другое Физика

    Ничего во Вселенной не исчезает бесследно и не появляется из неоткуда доказательством этого утверждения является моя гипотеза. Так и живая клетка не исчезает бесследно. Смерть живой клетки это термоядерный взрыв. Этот взрыв вызван нарушением баланса химических, физических и термоядерных реакций, происходящих в клетках. Радиоактивный углерод, радиоактивный кислород и дейтерий начинают распадаться, но энергии недостаточно для того, чтобы разорвать спирали ДНК. Нейтрино и антинейтрино покидают клетку. Как я уже говорил, нейтрино и антинейтрино являются переносчиками и хранителями информации, то есть при смерти клетки из нее выходит не только энергия гравитации, но и информация. Каждый организм строго индивидуален, как индивидуальна каждая клетка организма. Поэтому информация, покидающая организм, строго индивидуальна. Но это не просто информация покидает тело его покидает личность. И это, поверьте мне, не абсурд и не плод больной фантазии это лишь констатация факта. Что такое человеческая личность? Личность человека заключена в его мозге. А именно в нашем мозге, то есть в памяти, заложена информация о нашей личности. Осязание, обоняние, зрение, вкус и слух это всего лишь электрические сигналы, посланные и расшифрованные нашим мозгом. Человеческое тело, как и все, что нас окружает, состоит из веществ, а вещества это всего лишь сочетание элементарных частиц в определенной последовательности. Электромагнитная информация нашего мозга, наших клеток была записана с помощью нейтрино и антинейтрино на ядра радиоактивных атомов наших клеток. При смерти происходит микроядерный взрыв клеток. При этом нейтрино и антинейтрино, содержащие в себе информацию о личности, покидают тело! Поэтому я и утверждаю, что после смерти организм покидает личность. Электромагнитно-информационная оболочка покидает человеческое тело или, другими словами, то что, дает жизнь клеткам, его душа. После смерти душа покидает тело. Подчиняясь гравитации, душа устремляется к центру масс (как я уже говорил выше, нейтрино и антинейтрино могут свободно проходить сквозь нейтроны, а значит и через вещества, частью которых они являются). Ближайшим центром масс является наша Земля. Для того, чтобы живая клетка жила на Земле, ей необходимо преодолевать входящую земную гравитацию. Иначе ДНК будет разрушена или будет нарушен гравитационный баланс внутри клетки. И если душа после смерти клетки обладала меньшей гравитацией, чем необходимо для жизни, то душа уходила вовнутрь Земли. Если же масса была почти равна или чуть больше массы из расчета на одну клетку, необходимой для жизни, то душа будет находиться во взвешенном состоянии, «купаясь» в электромагнитных полях Земли. Если же масса души в расчете на одну клетку значительно превышала массу Земли, то душа уходила на Солнце. В случае если данная масса души еще больше, то она покидает Солнечную систему. Но ведь это парадокс! Как душа человека может превышать земную массу, если клетки умирают? Ну, во-первых, человек, как правило, умирает от болезни, а не от старения клеток. Во-вторых, человек проживает на Земле не одну жизнь, а несколько. Как это происходит?

  • 174. Голография и ее применение
    Другое Физика

    То есть на фотопластинке H2 регистрируется голограмма сфокусированного изображения. При освещении голограммы источником расходящегося освещения наблюдают изображение, причем источник освещения может быть неточечным и полихроматическим. Каждая спектральная компонента излучения за счет дисперсии голограммы-решетки строит смещенное по вертикали изображение щелевой диафрагмы 1, 2 и 3, которая служит окном наблюдения изображения в одном цвете, соответствующем данной спектральной компоненте. Если глаза наблюдателя расположены горизонтально (параллельно щели), то он видит объемное изображение (со всеми его свойствами) в одном цвете, а при смещении глаз по вертикали цвет изображения меняется по радуге (поэтому и "радужная"), но изображение остается резким. Наблюдается разделение, а не смешение цветов в вертикальном направлении, поскольку каждое окрашенное изображение -результат раздельного восстановления информации, содержащейся в узкой щели. Наибольшая резкость имеет место для точек изображения, лежащих в непосредственной близости от голограммы, точки же, находящиеся на некотором расстоянии от голограммы, будут относительно нерезкими. Степень не резкости зависит от размера щелевой диафрагмы. Ширина щели а определяется по формуле :

  • 175. Голография: основные принципы и применение
    Другое Физика

    Что же взять в качестве эталона? Для этой роли подходит только свет. В технике хорошо известны методы регистрации фазы электромагнитных волн, в которых свет используется в качестве эталона. Они основаны на явлении интерференции. При эталонном сравнении двух пучков света возникает интерференционная картина Важное условие ее неподвижности применение когерентного света. Итак, решение задачи регистрации фазовой информации оказалось совсем простым. Способ регистрировать фазу в световой волне на фотопластинке был найден. Теперь на фотопластинку можно было записывать как амплитудную, так и фазовую информацию, т. е; регистрировать световую волну со всеми ее характеристиками. Это полностью решало проблему записи волнового поля пространственного предмета. Должны были возникнуть новые принципы формирования изображения на фотопластинке и последующего его воспроизведения. Конечно, сам способ такого фотографирования должен существенно отличаться от обычного. Формулируя свое изобретение, Габор рассуждал примерно так. Для того чтобы получить качественное изображение пространственного предмета, надо возможно более точно воспроизвести рассеянное им волновое поле. Чем с большими подробностями оно будет воспроизведено, тем больше гарантия, что глаз наблюдателя увидит изображение предмета, ничем не отличающееся от оригинала. Для этого нужно каким-то образом записать волновое поле, образованное световыми волнами, рассеянными освещенным или светящимся предметом, а затем нужно воссоздать изображение предмета при помощи обычного видимого света.

  • 176. Государственная программа Республики Беларусь "Энергосбережение"
    Другое Физика

    Существующую систему финансового обеспечения государственной энергосберегающей политики предлагается дополнить следующими источниками и способами: акционерные инвестиции; лизинг; вексельное кредитование; займы международных финансовых институтов; целевая часть амортизационных средств; налог на топливо; фонд "Энерго- и ресурсосбережение" в бюджетной сфере; средства частных, отечественных и зарубежных инвесторов. Наиболее перспективным способом привлечения в республику новых технологий, оборудования, приборов и материалов является создание совместных предприятий с инофирмами. По вопросам участия в международных проектах программа предусматривает деятельность по следующим направлениям:

  • 177. Гравитон – термин украинский
    Другое Физика

    Тем не менее мы можем гордиться тем, что если слово электрон - английского происхождения (Дж. Томсон), слова протон и нейтрон - тоже английского (Э. Резерфорд и Дж. Чедвик), фотон -немецкого (М. Планк и А. Эйнштейн), нейтрино - немецко-итальянского (В. Паули и Э. Ферми), то слово гравитон - нашенское! И бог с ним, с Эйнштейном, который не признавал это слово. Весь мир признал, когда к 100-летнему юбилею Эйнштейна в мемориальном сборнике самых значительных работ по теории относительности рядом с известными статьями А. Эйнштейна и А. Эйнштейна и Г. Минковского международный комитет поместил статьи А. Фридмана и М. Бронштейна. Только жаль, что даже у нас мало кто знает, что слово гравитон - наше слово, а не импортное. Молодой ученый погиб в расцвете творческих сил. В августе 1937 г., после того как увидела свет последняя из его бесчисленных научных публикаций, с М. Бронштейном случилось то, что случилось в 37-м со многими светлыми головами. За несколько дней до него взяли астронома Н.А. Козырева, с которым он был дружен и который осмеливался иметь собственное мнение о пространстве и времени, не совпадающее с мнением Эйнштейна и его последователей. А за Бронштейном примчались в Киев, где он отдыхал у родителей. Не помогли ни характеристики А.Ф. Иоффе, ни обращения С. Маршака к генеральному прокурору.

  • 178. Давление в жидкости и газе
    Другое Физика

    Простейший мембранный манометр устроен следующим образом. Тонкая упругая пластинка М мембрана герметически закрывает пустую коробку K. К мембране присоединен указатель Р, вращающийся около оси О. При погружении прибора в жидкость мембрана прогибается под действием сил давления, и ее прогиб передается в увеличенном виде указателю, передвигающемуся по шкале. Каждому положению указателя соответствует определенный прогиб мембраны, а следовательно, и определенная сила давления на мембрану. Зная площадь мембраны, можно от сил давления перейти к самим давлениям. Можно непосредственно измерять давление, если заранее проградуировать манометр, т. е. определить, какому давлению соответствует то или иное положение указателя на шкале. Для этого нужно подвергнуть манометр действию давлений, величина которых известна и, замечая положение стрелки указателя, проставить соответственные цифры на шкале прибора.

  • 179. Дарачабанди
    Другое Физика

     

    1. Мувофики схемаи расми 1 занчири электри тартиб дихед. То санчиши устод ё лаборант тамоми калидхо дар вазъи кушода, лампахо аз занчири чудо ва автотрансформатор дар таксимоти сифрии шкала бояд бошад.
    2. Баъди санчиши устод шиддатро таввасути ЛАТР пайваст карда аз руи нишондоди волтметр шиддати 150 В-ро мукррар намоед.
    3. Лампаи якумро то охир дар патрон тоб дихед. Нишондодхои амперметр, волтметр ва ваттметрро ба кайд гиред.
    4. Мувофики формулахои (1) ва (2) иктидори истеъмолшаванда ва кимати як таксимоти ваттметрро муайян намоед.
    5. Бо навбат лампахои дигарро низ иловаги пайваста пунктхои 3 ва 4-ро такроран шузаронед.
    6. Натичахои андозагирию хисобу китобро дар чадвал ба кайд гиред.
  • 180. Датчики времени, скорости, тока и положения
    Другое Физика

    Электромеханическое реле контроля скорости (РКС) работает по принципу АД. Ротор реле (рис. 3, а) представляет собой постоянный магнит 1, соединенный с помощью валика с валом двигателя. Постоянный магнит помещен внутри алюминиевого цилиндра 5, имеющего обмотку в виде беличьей клетки. Цилиндр может поворачиваться вокруг оси валика 0 на небольшой угол и переключать при этом с помощью упора 3 контакты 4 (6). При неподвижном двигателе упор занимает среднее положение и контакты реле находятся в «нормальном» положении. При вращении двигателя и тем самым магнита 1 уже при небольших скоростях на цилиндр 5 начинает воздействовать вращающий момент, под действием которого он поворачивается и обеспечивает с помощью упора 3 переключение контактов 4. при скорости двигателя, близкой к нулю, цилиндр возвращается в среднее положение и контакты 4 переходят в свое «нормальное» состояние. Величина скорости, при которой переключается контакты реле, определяется положением настроечных винтов 2.