3. Представление

Вид материалаОбзор

Содержание


ГЛАВА 12. Эвристическая классификация (II)
12.3. Совершенствование стратегий Рекомендуемая литература Упражнения
12.1. Инструментальные средства и задачи, решаемые экспертной системой
В главах 14 и 15 мы еще познакомимся с дополнительными стратегиями управления поиском, которые приходится использовать в задачах
Отображение таких методов на множество типов решаемых задач — предмет дальнейших исследований.
Подобный материал:
1   ...   40   41   42   43   44   45   46   47   ...   110
^

ГЛАВА 12. Эвристическая классификация (II)

12.1. Инструментальные средства и задачи, решаемые экспертной системой

12.2. Эвристическая классификация в системах MUD и MORE

^

12.3. Совершенствование стратегий Рекомендуемая литература Упражнения

Сейчас мы продолжим начатый в предыдущей главе анализ различий между задачами классификации и конструирования. Но теперь основное внимание будет сосредоточено на методах решения проблем, включая и различные способы представления знаний и реализации машины логического вывода. В частности, мы подробно рассмотрим типы инструментальных программных средств, наиболее подходящих для разработки систем эвристической классификации, примеры использования эвристической классификации в экспертных системах, более современных, чем MYCIN и EMYCIN, и увидим, каким образом сказывается обладание знаниями об используемых методах решения проблем на работе автоматизированных систем извлечения знаний.

Мы начали обсуждение методов решения проблем с эвристической классификации по той причине, что этот метод наиболее понятный. В следующих главах будут рассмотрены другие, более сложные методы, и вы сможете сравнить их.

Но в этой главе мы будем считать, что метод решения проблем выбран, а наша задача — проанализировать процесс выбора инструментальных средств для проектируемой экспертной системы и средств приобретения знаний.

^

12.1. Инструментальные средства и задачи, решаемые экспертной системой

В своей статье [Clancey, 1985] Кленси отметил, что хотя языки, базирующиеся на правилах, такие как EMYCIN, и не учитывают многих свойств предложенной им модели эвристической классификации, все же они являются достаточно подходящими инструментами для задач классификации, в частности задач диагностики. Хотя вразрез с рекомендациями Кленси ни система MYCIN, ни системы, базирующиеся на EMYCIN, не содержат специфических средств таксономии симптомов или признаков неисправностей, тот факт, что решения могут быть заранее пронумерованы, означает, что можно применить обратную стратегию построения суждений, т.е. строить логическую цепочку от абстрактных категорий решений к подходящим данным через промежуточный этап абстрагирования данных. Этот этап неявно включен в используемые правила. Тот факт, что выводы из набора правил индексируются в терминах медицинских параметров, на которые они ссылаются, позволяет без особого труда реализовать стратегию рассуждения от цели к средствам.

Ранее мы уже упоминали о таких особенностях MYCIN, как отказ от обратного прослеживания в пользу деструктивной модификации рабочей памяти и использование стратегии исчерпывающего поиска.

Эти две особенности MYCIN тесно увязаны. Нет необходимости использовать обратное прослеживание, поскольку мы неотступно следуем за множеством независимых свидетельств и на заключительной стадии ранжируем гипотезы. Если бы не использовалась стратегия достаточно исчерпывающего поиска, то потребовалось бы выполнять в той или иной форме обратное прослеживание, как это было показано в главе 2. Процесс обратного прослеживания требует больших затрат вычислительных ресурсов системы, так как приходится сохранять информацию о предыдущих этапах вычислений, к которым, возможно, придется еще возвращаться. Большой объем пространства состояний, в котором ведется поиск, требует значительных ресурсов памяти. На практике при этом используется механизм постраничного обмена между оперативной и дисковой памятью, что отрицательно сказывается на производительности системы в целом. Однако значительные вычислительные ресурсы отвлекаются на активизацию каждого потенциально подходящего правила, от чего приходится отказываться в некоторых системах. Во многих системах используется методика восхождение на гору, в которой принятие решения об использовании некоторого правила не может быть пересмотрено или отменено (см. главу 2). Иногда при этом может потребоваться использование локального обратного отслеживания (подробнее об этом — в главе 14 и в Приложении).

Такой простой режим управления редко используется при решении проблем конструирования. Проблемы проектирования и формирования конфигураций, как правило, требуют использования средств, характеризующихся наличием множества альтернативных способов решения, причем эти способы отнюдь не равноценны по качеству результата. Довольно часто приходится сталкиваться с ситуацией, когда отсутствует хорошая оценочная функция, которую можно было бы применить при поиске в пространстве состояний. Это объясняется тем, что качество проектирования определяется не только изолированными свойствами проектируемой конструкции и ее компонентов, но и глобальными параметрами, которые можно оценить только после завершения проектирования конечного продукта. Например, при решении задачи рациональной расстановки мебели в помещениях нужно принимать во внимание необходимость удовлетворения определенных ограничений и пожеланий: желательно письменный стол ставить вблизи окна, книжный шкаф размещать недалеко от письменного стола, диван ставить против телевизора и т.д. Но сформированные решения могут удовлетворять одним пожеланиям (ограничениям) и не удовлетворять другим, поскольку нужно удовлетворить какие-либо важные глобальные ограничения — оставить свободным проход через комнаты или обеспечить единообразную расстановку мебели.

^

В главах 14 и 15 мы еще познакомимся с дополнительными стратегиями управления поиском, которые приходится использовать в задачах конструирования. Сюда входят:

стратегия наименьшего принуждения (least commitment) — стремление отложить на будущее, насколько это возможно, принятие решений, ограничивающих свободу последующего выбора;

стратегия предложения и исправления (propose and revise) — стремление устранить нарушение сформулированных ограничений, как только такое нарушение обнаруживается;

различные виды обратного прослеживания, когда при обнаружении нарушения определенных условий пересматриваются только что принятые решения и выполняется откат в предшествующее состояние.

^

Отображение таких методов на множество типов решаемых задач — предмет дальнейших исследований.

Как бы там ни было, но для выбора подходящих инструментальных средств построения экспертных систем существенную роль играет идентификация уровня задач анализа, которая базируется на используемых методах решения проблем. Этот уровень, как правило, располагается между более высокими концептуальным и эпистемологическим уровнями и более низкими логическим и уровнем реализации, о которых шла речь в главе 10. Если не выполнить такую идентификацию, появляется опасность утраты обобщенных связей между типами задач и структурами логического вывода и языками представления знаний.