3. Представление

Вид материалаОбзор

Содержание


Square 3) = ((lambda (x)
Подобный материал:
1   ...   9   10   11   12   13   14   15   16   ...   110

4.2. Физическая символическая система

Ньюэлл [Newell, 1981] описывает физическую символическую систему как помещенную в некоторую среду машину, состоящую из следующих компонентов:

памяти, включающей символические структуры, число и содержание которых может изменяться во времени;

набора операторов для манипулирования символическими структурами, например чтения, записи, копирования;

средств управления, предназначенного для непрерывной интерпретации текущей активной символической структуры или структуры, к которой выполняется обращение;

средств ввода из окружающей среды посредством рецепторов и вывода в окружающую среду посредством эффекторов.

Программа в физической символической системе — это также символическая структура, которая интерпретируется или обрабатывается каким-то способом, зависящим от символов, составляющих ее (программу), и от символов, полученных от средств ввода. Простейшие программы соответствуют операторам манипулирования символами, а более сложные описывают процедуры, скомпонованные из этих операторов. Средства управления способны отличать данные от программы, хотя и те и другие являются символическими структурами. Физическая символическая система весьма схожа с компьютером общего назначения, оснащенным программами обработки символов. Известно, что компьютер с хранимой программой является универсальной машиной (грубо говоря, он может моделировать операции любой другой машины), а следовательно, обладает способностью воспроизводить все обобщенные рекурсивные функции (т.е. все функции, которые могут быть реализованы любой машиной). Именно наличие такого средства, которое потенциально подходит для реализации абстрактной физической символической системы, и вдохновило исследователей на смелое предположение, что машина может обладать интеллектом.

В следующем разделе мы рассмотрим реализацию и использование физической символической системы в искусственном интеллекте.

4.1. Главная гипотеза

Ньюэлл и Саймон следующим образом сформулировали гипотезу физической символической системы (Physical Symbol System Hypothesis) [Newell and Simon, 1976]:

"Физическая символическая система имеет необходимые и достаточные средства для того, чтобы производить осмысленные действия".

Другими словами, без символических вычислений невозможно выполнять осмысленные действия, а способность выполнять символические вычисления вполне достаточна для того, чтобы быть способным выполнять осмысленные действия. Таким образом, если мы полагаем, что животное, или человек, или машина действуют осмысленно, то значит, они каким-то образом выполняют символические вычисления. (Ваш кот в действительности умнее, чем вы думаете.)

Независимо от того, справедлива ли эта гипотеза, символические вычисления стали реальностью, и полезность этой парадигмы для программирования трудно отрицать.

4.3. Реализация символических структур на языке LISP

Как только мы беремся за задачу реализации символических структур и выполнения операций над такими структурами, немедленно встает вопрос, о каких именно структурах идет речь. Символы в логике и математике обычно организованы в виде множеств или последовательностей. Посмотрим, как эти формальные структуры, достаточно понятные на абстрактном уровне, можно использовать в качестве базиса для структуры, объединяющей физические символы.

Множество — это неупорядоченный набор элементов, в то время как физические символы в структуре должны занимать определенное положение (это положение может быть скрытым от программиста, и он может рассматривать структуру как неупорядоченное множество, но это уже относится в особенностям реализации). Последовательность, как структура, позволяет говорить о месте символа в этой последовательности, но абстрактная последовательность может быть бесконечной.

Хорошим кандидатом на место базисной структуры в физической символической системе является список— элементы в списке занимают совершенно определенное место и его можно однозначно связать с каждым отдельным элементом. С помощью списка можно представить и множество, и последовательность, хотя размерность последней и ограничена физическими характеристиками среды реализации.

4.3.1. Структуры данных в языке LISP

Одним из первых языков обработки списков был LISP2 [McCarthy, 1960]. За четыре десятилетия, которые прошли после появления его первой версии, язык неоднократно, модифицировался и расширялся, но в основе своей изменился мало. Разработчики языка утверждали, что LISP отличается от прочих языков программирования следующими свойствами [McCarthy et al, I960]:

основной структурой данных в нем является список;

программы на этом языке также имеют списочную структуру;

его базовыми операциями являются операции над списками.

В 1960 году выбор списков в качестве базовой структуры языка программирования рассматривался как революционный шаг. Сейчас большинство языков программирования общего назначения тем или иным образом поддерживает операции над списочными структурами, хотя от программистов обычно требуется запрашивать выделение памяти для формирования списка, а затем после его использования — возвращать память системе. В LISP еще на ранних стадиях развития в исполняющую систему был встроен механизм "уборки мусора", и программисту не требовалось следить за распределением памяти.

Базовым блоком в структуре данных языка LISP является символическое выражение. Простое символическое выражение использует атомарные символы, или атомы — строки буквенно-цифровых символов, которые начинаются с буквы, например WOMBAT. (Допустимая длина строки варьируется в зависимости от версии исполняющей системы.) Во внутренней структуре данных атом представлен ячейкой памяти. Отдельным атомом является символ Т, которым представляется константа "True" — истина. Другой специальный атом, NIL, представляет, с одной стороны, константу "False"—ложь, а с другой — пустой список.

Составные выражения объединяются в древовидной структуре, при этом используется очевидное соответствие между символическими выражениями и представлением конечных деревьев. Читатели, склонные к математическим формулировкам, найдут более строгое изложение этого соответствия во врезке 4.2.

Списки представляют собой довольно гибкие структуры данных, поскольку могут объединять элементы разных типов и иметь произвольную длину и размерность (вложенность). Например, в LISP возможен такой список:

("а" (9) () N (? (WOMBAT)) (A . В) NIL 0.9)

Этот список содержит элементы разных типов — строки, числа с фиксированной и плавающей точкой, атомы, булевы значения, точечные пары и другие списки.

Но списки имеют и определенные недостатки, из-за которых в LISP были включены и другие структуры данных. Списки в LISP представляют собой стеки, т.е. доступ к ним возможен только с одного конца списка. Манипулируя только таким списком, невозможно обратиться к элементу списка по его позиции, как это делается с элементом массива. Поэтому для представления больших совокупностей относительно постоянных или редко меняющихся данных в LISP были включены другие типы структур. В современных версиях LISP поддерживаются массивы, хэш-таблицы и структуры, подобный записям, которые позволяют эффективнее использовать пространство памяти и повысить скорость доступа.

4.2. Списки и точечные пары

Пусть задан оператор "." для комбинирования ячеек в древовидной структуре. Тогда определение символического выражения в LISP можно сформулировать следующим образом.

Любой атом является символическим выражением.

Если А1 и А2 суть символические выражения, то (А1 A2)— это также символические выражения.

Если S = (А,. (А2 . (.... (Ап-1. AJ ....))) — суть символическое выражение для некоторого п>0, то S — список тогда и только тогда, когда Аn =NIL.

В соответствии с этим определением, если п=0, то S представляет собой пустой список, NIL. Такое определение допускает существование списка списков, а также списка атомов. Если S1 S2, ..., Sn— символические выражения, то мы будем представлять список

S1.(S2.(.... (Sn. NIL)....)))

в виде

(S1 S2.... Sn)

Таким образом, (А . (В . NIL)) является списком. Он представляет список (А В), но (А . (В. С)) списком не является, поскольку (С=NIL)).

Символическое выражение, которое не является ни атомом, ни списком, называется точечной парой. Если (А . В) — точечная пара, то А — это голова пары, а B — ее хвост. Точечные пары могут иметь произвольную сложность. Так, ((А . В). С) — тоже точечная пара, так же, как и ((А . В) . (С. D)). Благодаря наличию соответствия между точечными парами и списками, понятия головы и хвоста определены и для списков. Поскольку список (А В) — это (А . (В . NIL)), то очевидно, что А — голова в списке (А В), а хвост — это (В), но не В. Хвостом списка (В) является NIL

4.3.2. Структура LISP-программы

Как использовать список в качестве базовой структуры данных, понятно. Сложнее представить себе, как можно организовать программу или выражение программы в виде списка. Например, список

(+ X Y) представляет математическое выражение в форме

(<функция> <1-й аргумент> <2-й аргумент>),

которое обозначает сложение двух чисел. Такой метод обозначений (нотация) отличается от привычного нам обозначения функции п переменных в виде f(x1, ... xn). Но возникает вопрос, как компилятор или интерпретатор отличает данные от программы, если и то и другое представлено списками.

Необходимо иметь возможность определить значение такого выражения— например, значение выражения ( + X Y). Для этого нужно отыскать определение функции (в данном случае — функции +). В этом определении должна содержаться та последовательность элементарных операций, которую нужно применить к аргументам, чтобы определить значение функции.

Нужно иметь средства сформировать определение функции и применить это определение к аргументам, т.е. к действительным, а не формальным параметрам. Механизм определения функции и приложения функции базируется на логической системе, названной лямбда-исчислением (см. [Church, 1941]). Лямбда-исчисление является скорее функциональным, чем исчислением отношений, и в этом состоит различие между ним и исчислением предикатов первого порядка. В функциональном исчислении первичным понятием является отношение "многие-к-одному", а не "многие-ко-многим". Так, отец — это функциональное отношение, а брат — более общее отношение, поскольку каждый человек может иметь только одного отца, а братьев может быть несколько. Ниже в этой главе мы более подробно остановимся на связях между языком LISP и лямбда-исчислением.

Нужно располагать средствами доступа к текущим значениям переменных (или формальных параметров), таких как X и Y. Вычисление каждого символического выражения выполняется в контексте формирования переменных. Нужно располагать средствами сохранения и восстановления этого контекста при вычислении значений сложных символических выражений, т.е. вычисления и комбинирования значений содержащихся в них подвыражений.

При вычислении сложных символических выражений, когда необходимо вычислять значения его компонентов, которые являются сложными выражениями, нужно располагать средствами сохранять текущее выражение и промежуточные результаты. Необходимо также обладать средствами копирования символических выражений.

Нужно уметь подавлять вычислительную обработку списков, которые не являются операторами программы, а структурами данных. Например, не нужно пытаться вычислять выражение, подобное следующему:

((1 2 3)(4 5 6)(7 8 9))

и пытаться отыскать определение функции (1 2 3).

Для этого существует специальная форма выражения (QUOTE X) для любых X, которая возвращает X. Точно такое же действие выполняется и выражением (quote X).

Современные версии LISP не чувствительны к регистру символов, хотя и возможно так сконфигурировать исполнительную систему, что она станет по-разному воспринимать символы верхнего и нижнего регистров.

4.3. Функции, их вычисление и проблема цитирования в CLIPS

Существуют два основных метода разрешения проблемы цитирования, т.е. предотвращения интерпретации данных как функций или выражений. Один метод заключается в том, чтобы в число системных функций ввести специальную функцию, которая рассматривается интерпретатором как указание не обрабатывать последующий список. Такой системной функцией в LISP является QUOTE. Другой метод состоит в том, чтобы по умолчанию подавлять механизм оценивания значения (вычисления) до тех пор, пока специальная синтаксическая конструкция его не запустит. В языке CLIPS использован именно такой метод.

Например, в CLIPS можно следующим образом определить функцию:

(deffunction between(?lb ?value ?ub)

(or (> lib ?value) (> ?value ?ub))))

Эта функция определяет, попало ли заданное целочисленное значение в диапазон между указанными нижним и верхним пределами. Знак вопроса, предшествующий именам, говорит интерпретатору CLIPS, что выражения ?lb, ?value и ?ub являются переменными и их не нужно оценивать.

Общепринятым методом реализации функциональных языков типа LISP является использование четырехстековой машины, за которой закрепилось наименование SECD-машины. В четырех стеках машины отслеживаются промежуточные результаты, значения переменных, текущее выражение и копии текущего состояния процесса вычислений сложного выражения, которые нужны, чтобы восстановить состояние после завершения вычисления вложенного выражения (подвыражения). Не вдаваясь в подробности, отметим, что процесс оценивания символического выражения в такой машине — это не что иное, как реализация базовой операции приложения функции, как это определено в лямбда-исчислении (см., например, [Henderson, 1980], [Glaser et al., 1984]).

4.3.3. Приложение функции и лямбда-исчисление

Для того чтобы разобраться в связи между лямбда-исчислением и языком LISP, нужно постоянно держать в уме сформулированное Черчем отличие между денотацией (означиванием) и абстракцией. Так, выражение (X X) означивает конкретное число, которое зависит от значения X. Но то же число можно получить и при помощи функции square(X), которая является абстракцией, поскольку ее можно приложить к разным значениям X. Для того чтобы отличить означивание от абстракции, первое представляется в лямбда-исчислении в таком виде:

(лх)(X х)

Говорят, что лямбда-оператор, X, связан с переменной X, как квантор связывает отдельные переменные в исчислении предикатов. Тогда (ЛХ)(X X) может служить определением функции возведения в квадрат:

square(X) = (лX)(X X)

Теперь для применения функции возведения в квадрат к конкретному числу, скажем 3, мы должны каким-то образом подставить 3 вместо переменной X и оценить (X ,Х), в результате чего получим 9. Когда определение функции применяется к аргументу 3, используется правило влияния, получившее наименование лямбда-преобразования. Доложим, что (лХ)М определяет любую лямбда-абстракцию, и пусть S(a, X, М) — результат подстановки X в М.

Лямбда-преобразование. Заменим любую часть (lХ)М в формуле на s(a, x, М), причем ограниченные переменные в м отличны как от х, так и от свободных переменных а.

Если мы полагаем, что ((ЛХ)М) а обозначает применение определения функции (ЛХ)М к аргументу а, то

((ЛХ)(Х Х))(3) = (3 3) = 9 .

Какое же все это имеет отношение к языку LISP? А вот какое. Определение функции возведения в квадрат в LISP выглядит примерно так:

(defun SQUARE (X) (LAMBDA (X) ( X X))) .

В различных диалектах языка допустимы вариации, но смысл остается тем же. В частности, в диалекте COMMON LISP используется сокращенная форма

(defun SQUARE (X) ( X X)) .

В любом случае имя функции, в данном случае SQUARE, ассоциируется в определении с лямбда-выражением. Выражение (LAMBDA (X) ( X X)) — это просто синтаксический вариант ((ЛХ) (X X)). Фактически, если определено SQUARE, в любом диалекте LISP имеем

^ (SQUARE 3) = ((LAMBDA (X)

( X X)) 3) = ((АХ)(Х Х))(3) = 9 .

Обратите внимание на то, что LAMBDA не является функцией. Это специальный оператор в лямбда-исчислении.

Синтаксическая форма вызова функции в языке LISP имеет вид

(<функция> <аргумент> ... <аргумент>).

Это не самая сложная синтаксическая форма, а вместе с QUOTE, LAMBDA и условными выражениями этим фактически исчерпывается все, что необходимо знать о синтаксисе языка LISP. Тем, кто по каким-то иррациональным причинам испытывает тягу к запятым, двоеточиям, точкам с запятой, палиндромам вроде (if... ft, case ... esac) и тому подобному, будет поначалу трудно свыкнуться с мыслью, что в LISP единственным ограничителем являются круглые скобки. Программа на языке LISP — это просто структура данных, и другая LISP-программа ее может читать, записывать и обрабатывать точно так же, как любой другой набор данных.

4.3.4. Обработка списков

Языку LISP можно дать очень лаконичное формальное определение. Большинство LISP-программ можно специфицировать, используя только пять простейших операторов над символическими выражениями (см. врезку 4.4) и одну специальную форму (условное выражение). Эта элегантность и красота языка LISP часто не заметна неопытному взгляду, поскольку большинство LISP-приложений включает множество дополнительных операторов, собственно к LISP не относящихся. Современные диалекты LISP в буквальном смысле задыхаются от программных конструкций, заимствованных из языка FORTRAN, некоторые из которых оказались полезными, а другие просто вызывают отвращение (справедливости ради, нужно отметить, что некоторые обладают и тем и другим).

Как оказалось, структурой, наиболее подходящей для нечисловых вычислений, являются списки. Именно такие вычисления необходимо выполнять в процессе поиска решения в пространстве альтернатив, как это было показано в главе 2. В списке можно держать в поле зрения те альтернативные варианты, которые уже были рассмотрены ранее, не которые еще предстоит рассмотреть, и т.д. Поскольку между списками и древовидными ориентированными графами существует изоморфизм, естественно представлять развернутое пространство состояний в виде одного или более списков.

4.4. Примитивы в LISP

В языке LISP имеется пять операций, которые, хотя и не имеют специальных наименований, лежат в основе всех остальных. LISP использует их в качестве виртуального машинного кода" при построении более сложных примитивов. Например, в LISP имеются полиморфные предикаты равенства.

Пусть s — множество символических выражений. Можно, например, записать:

Е(Х , Y): S x S -> {Т, NIL}

Это означает, что Е является функцией двух аргументов, причем оба аргумента — символические выражения из множества S, которые могут принимать значение либо Т, либо NIL.

(1)Е(Х , Y): S x S -> {Т, NIL} проверяет, равны ли два атома.

(2)А(Х): S -> {Т, NIL} проверяет, является ли символическое выражение атомом.

(З)Н(Х): S -> S извлекает голову символического выражения, которое не является атомом; если х — атом, то результат функции не определен.

(4) Т(Х): S —> S извлекает хвост символического выражения, которое не является атомом; если х — атом, то результат функции не определен.

(5)С(Х , Y): S х S —> S формирует символическое выражение; если А и в являются символическими выражениями , то можно сформировать новое символическое выражение (А . В).

Совокупности операции композиции функций и условного оператора описанных оераций вполне достаточно для того, чтобы вычислить любую обобщенную рекурсивную функцию. Композиция функций — это способность сделать значение одной срункции аргументом другой, т.е. организовать гнездование функций, например С(Н(Х), У).

Фактически система, состоящая из трех компонентов

(1) единственного атома NIL;

(2) условного выражения, проверяющего равенство, в форме

if E(X, NIL) then ... else ... 3) функций Н(Х), Т(Х), С(ХД)

к которым добавлена операция композиции функций, вполне позволяет реализовать машину Тьюринга (см. [Minsky, 1972, Chapter 10]).

Можно использовать списки и для представления ассоциативной связи одних символов с другими. Например, список

((Alabama Montgomery) (Alaska Juneau) (Arizona Phoenix) ... )

позволяет представить столицы пятидесяти штатов. Представленная ниже LISP-программа сможет затем извлечь название столицы заданного штата из этого ассоциативного списка.

(defun assoc (key alist)

(cond ((null alist) NIL)

((eq (first (first a list)) key) (first alist))

(T (assoc key (rest alist)))) )

Если обратиться к этой функции с помощью, например, выражения (assoc 'Alaska '((Alabama Montgomery) (Alaska Juneau) (Arizona Phoenix) ... ), то функция возвратит список

(Alaska Juneau) .

NULL — это предикат, который проверяет, не пуст ли список, EQ — предикат, который проверяет равенство двух атомов, FIRST — функция, которая возвращает головной элемент списка, a REST — функция, которая возвращает хвост списка (см. врезку 4.4).

Основным условным выражением в LISP является COND. В приведенном выше фрагменте программного LISP-кода это условное выражение может быть расшифровано следующим образом:

если alist это null, то вернуть NIL, иначе

{

если головной элемент головного элемента alist равен key, то вернуть головной элемент alist,

иначе вернуть результат применения функции assoc к хвосту alist. }

Условное выражение COND можно представить в терминах примитива if-then-else, описанного во врезке 4.4. Выражение COND может включать сколько угодно вложенных конструкций if-then-else.

Конечно, ассоциативные списки — это не самое лучшее средство хранения данных, но наш пример с таким списком помог вам представить, как в LISP организуется рекурсивная обработка списков

4.3.5. Сопоставление с образцом

Одним из ключевых компонентов в большинстве программ искусственного интеллекта является анализатор соответствия (pattern matcher) — компонент, который некоторым образом сравнивает поступающие на его вход списки (или другие структуры данных) с имеющимися символическими образцами и таким образом выполняет распознавание входных данных.

В главе 3 мы обращали ваше внимание на то, что факты, относящиеся к состоянию окружающего мира, представляются в форме "предикат— аргумент". Тот факт, что робот находится в комнате, был представлен в модели мира формулой

at(robot, room). На языке LISP этот факт будет представлен символическим выражением

(at robot room). Положим, что ? — символ универсальной подстановки и что выражение

(at robot ?) представляет собой образец, которому соответствует и выражение

(at robot room), и другое выражение в форме

(at robot blah),

где blah — любой символ. На языке LISP несложно разработать простой анализатор соответствия, который будет сравнивать два ординарных списка (т.е. списка, на имеющего подсписков в качестве элементов) и возвращать значение TRUE, если один из них, sample (пример), можно представить как реализацию другого — pattern (образец). Текст такой программы приведен ниже. Предполагается, что образец может иметь любую конечную длину и содержать любое количество символов универсальной подстановки.

(defun match (sample pattern)

(cond ((and (null sample)

(null pattern)) T) ((or

(null sample) (null pattern)) NIL)

((eq (first pattern '?))

(match (rest sample) (rest pattern)))

((eq (first sample) (first pattern))

(match (rest sample) (rest pattern)))

(T NIL)) )

Обращение к этой функции в выражении

(match '(at robot room) '(at robot ?))

даст результат Т, а обращение

(match '(at box room) '(at robot ?))

даст результат NIL.

Можно усовершенствовать приведенный анализатор соответствия. Например, сделать так, чтобы он различал другой символ универсальной подстановки в качестве переменной, которой может быть присвоено значение символа, соответствие с которым анализируется. Например, образцу

(at ?X ?Y)

должен соответствовать пример

(at robot room),

который образуется при подстановке {?X/robot, ?Y/room}, как об этом говорилось в главе 3. Можно также потребовать, чтобы присвоение значений переменным было совместимым, т.е. чтобы пример

(at robot room)

не соответствовал образцу

(at ?Х ? X).

Но, как мы видели в главе 3, главное назначение анализатора соответствия — показать, что имеющаяся в программе модель мира удовлетворяет условиям некоторого правила, которое в таком случае программа сможет затем применить. Пусть в программе имеется простое правило, утверждающее, что все объекты, находящиеся в комнате, нужно покрасить:

if (at ?X room) then (paint ?X)

Нужно проверить, соответствует ли условию if (at ?X room) этого правила модель мира, представленная списком

(at box room).

Полученную подстановку {?X/box} применим затем к констатирующей части правила и получим в результате

(paint box).

Анализ соответствия — это довольно "расточительная" операция в смысле расхода вычислительных ресурсов, если только не пользоваться ею с умом. В главе 13 мы увидим, что существуют довольно эффективные алгоритмы, которые позволяют решить, в каких именно из имеющихся в наборе правилах (или отдельном правиле) сформулированы условия, соответствующие анализируемым данным. В настоящее время язык LISP не используется для реализации систем, базирующихся на правилах, в основном из-за недостаточной его эффективности, но по-прежнему используется тот принцип обработки списков при анализе соответствия, который был впервые реализован на LISP.