Учебник по навигации возможно

Вид материалаУчебник

Содержание


Цилиндрические проекции, применяемые для построения морских навигационных карт
Для эллипсоида: x = f (φ) y = Cλ m = dx / Mdφ n = dy / Ncosφdλ sin ω = (a - b) / (a + b) = (m - n) / (m + n)
Подобный материал:
1   ...   4   5   6   7   8   9   10   11   ...   16

Глава 4

^ ЦИЛИНДРИЧЕСКИЕ ПРОЕКЦИИ, ПРИМЕНЯЕМЫЕ ДЛЯ ПОСТРОЕНИЯ МОРСКИХ НАВИГАЦИОННЫХ КАРТ

§ 25. Основные требования, предъявляемые к морской навигационной карте

Выбор картографической проекции при построении карты определяется теми целями и задачами, для решения которых карта предназначена. Соответственно этим задачам, их характеру и особенностям к картографической проекции и содержанию карты предъявляются определенные требования. К проекциям, используемым для построения морских навигационных карт, предъявляются следующие основные требования.

1. Проекция должна обладать свойством равноугольности (конформности). В практике кораблевождения штурман постоянно производит измерения направлений (пеленгов) и углов между ориентирами на земной поверхности, которые затем прокладываются на карте. Равноугольность проекции карты облегчает и обеспечивает наибольшие удобства и быстроту прокладки результатов таких измерений. Кроме того, равноугольность проекции в наибольшей степени способствует опознанию обстановки на местности по ее изображению на карте, и наоборот.

2. Траектория движения корабля, идущего неизменным курсом, и, следовательно, составляющая с земными меридианами постоянный угол, на морской карте должна изображаться прямой линией, как наиболее простой для Графической ее прокладки. Такая линия называется локсодромией. Если локсодромия будет изображаться на проекции прямой линией, сохраняющей постоянными углы пересечения с меридианами, значит, меридианы должны быть параллельными прямыми. Но параллели и меридианы всегда перпендикулярны друг другу. Следовательно, картографическая сетка морской карты, удовлетворяющая первому и второму условиям, должна состоять из двух семейств прямых линий — географических меридианов и параллелей, взаимно перпендикулярных друг другу.

3. Поскольку в практике кораблевождения решение ряда навигационных задач производится при условии принятия фигуры Земли за шар, было бы практически удобно, чтобы на картографической сетке морской карты дуга большого круга — ортодромия изображалась также наиболее простой линией—прямой или близкой к прямой линией. Это требование особенно важно для обеспечения плавания в высоких широтах.

4. Наконец, одним из важных требований, предъявляемых к картографической проекции, является требование давать высокую точность изображения по всей картографируемой площади. Иначе говоря, это требование состоит в том, чтобы искажения длин как в разных местах картографируемой площади, так и около одной точки по разным направлениям не превышали ошибок графических измерений и построений на карте с помощью прокладочного штурманского инструмента.

Удовлетворить одновременно всем перечисленным требованиям ни одна картографическая проекция не может. Поэтому для целей кораблевождения строятся и издаются карты в разных проекциях, а используются при решении отдельных задач те из них, которые в данных конкретных условиях наилучшим образом отвечают перечисленным требованиям и требованиям решаемой задачи.

Основными проекциями, используемыми для составления морских карт, являются:


— равноугольная цилиндрическая проекция Меркатора;
— равноугольная поперечная цилиндрическая проекция Гаусса;
— равноугольная азимутальная, (стереографическая) проекция;
— центральная (гномоническая) проекция;
— равноугольная поперечная проекция Меркатора.



§ 26. Общие формулы цилиндрических проекций

Уравнения меридианов и параллелей цилиндрических проекций в общем виде определяются выражениями (76);
x = f (φ);
y = C(λ)
где С—коэффициент пропорциональности, определяющий расстояния между меридианами.
Отдельные цилиндрические проекции различаются между собой лишь видом функции f (φ).

Так как меридианы и параллели на проекции и в натуре взаимно перпендикулярны, их направления являются главными направлениями. Следовательно, масштабы вдоль меридианов и параллелей имеют экстремальные значения, а именно: m = а и n = b. Бесконечно малая трапеция A
0A'0A''0A'''0 (рисунок), образованная на поверхности шара (или эллипсоида) пересечением бесконечно близких друг к другу меридианов и параллелей, на плоскости проекции изобразится прямоугольником АА'А"А"' со сторонами dx и dy. Отрезок A0A'''0 представляет собой бесконечно малую часть меридиана — Rdφ — на шаре или Mdφ — на эллипсоиде, а отрезок A0A'0 — бесконечно малую часть параллели — rdλ = Rcosφ —на шаре или rdλ = Ncosφdλ — на эллипсоиде, где r —радиус параллели в широте φ, равный Rcosφ для шара и Ncosφ для эллипсоида.


На основании определения масштаба, выразим масштабы по меридиану m и параллели n:



для шара
m = dx / Rdφ n = dy / rdλ = dy / R cosφ dλ (77)



для эллипсоида
m = dx / Mdφ n = dy / rdλ = dy / N cosφ dλ (78)

Наибольшее искажение направлений выражается формулой (65). Чтобы воспользоваться этой формулой, нужно знать полуоси а и b эллипса искажений. Но так как в цилиндрических проекциях главные направления совпадают с меридианами и параллелями, то полуосям а и b соответствуют экстремальные масштабы m и n, поэтому



sin ω = (a - b) / (a + b) = (m - n) / (m + n) (79)



Таким образом, общими формулами для всех цилиндрических проекций будут:



^ Для эллипсоида:
x = f (φ)
y = Cλ
m = dx / Mdφ
n = dy / Ncosφdλ
sin ω = (a - b) / (a + b) = (m - n) / (m + n)



Для шара:
x = f (φ)
y = Cλ
m = dx / Rdφ
n = dy / Rcosφdλ
sin ω = (a - b) / (a + b) = (m - n) / (m + n)




§ 27. Равноугольная цилиндрическая проекция Меркатора

Проекция, предложенная в 1569 г. голландским картографом Герардом Кремером, носившим, кроме того, латинское имя Меркатор, получила название проекции Меркатора. Эта проекция удовлетворяет двум основным требованиям, предъявляемым к проекциям для морских навигационных карт:
- она равноугольна;
- локсодромия на проекции изображается прямой линией.

Первое свойство проекции Меркатора — равноугольность выражается равенством масштабов по всем направлениям, т. е. а = b = m = n. Вследствие этого бесконечно малый кружок на поверхности Земли на карте в проекции Меркатора изобразится также бесконечно малым кружком.

Второе свойство определило вид географических меридианов и параллелей проекции: они представляют собой два семейства взаимно перпендикулярных прямых линий.
Нормальной картографической сеткой проекции Меркатора является сетка географических меридианов и параллелей, а нормальной системой сферических координат — географические координаты φ и λ.
Продифференцировав формулу (76) y =Сλ и подставив полученное значение dy в одну из формул (78) для цилиндрических проекций, получим

n = Cdλ / Ncosφdλ = C / Ncosφ - для эллипсоида и
n = Cdλ / Rcosφdλ = C / Rcosφ - для шара.

Для установления закона построения картографической сетки проекции Меркатора необходимо установить вид функции х = f(φ) в формулах (76).
Подставив значения m и n для эллипсоида из исходных формул (78) и приравняв их, можно написать

m = n = dx / Mdφ = C / Ncosφ

Из этого равенства имеем dx = C (M / N) * (dφ / cosφ).
Подставив значение радиусов кривизны М и N главных нормальных сечений земного эллипсоида из формул (6) и (7), получим

dx = C * {a * (1 - e²)(1 - e²sin² φ)½) / (1 - e²sin² φ)
3/2 *a} * dφ / cos φ,

откуда

dx = C * {(1-e²) / (1 - e²sin²φ)} * (dφ / cosφ)

Для интегрирования полученного выражения умножим в числителе e² на единицу, написав ее в виде sin²φ + cos²φ = 1, тогда

dx = C * {1 - (e²sin²φ + e²cos²φ) / (1 - e²sin²φ} * (dφ / cos φ} = C * {(1 - e²sin²φ - e²cos²) / (1 - e²sin²)} * dφ / cos φ = C * {(1 - e²sin²φ) / (1 - e²sin²φ) - (e²cos²φ) / (1 - e²sin²φ)} * (dφ / cos φ = C * (dφ / cos *φ) - C * {(e²cos²φ) / (1 - e²sin²φ) * dφ.

Сделаем подстановку, введя вспомогательную величину esinφ = sin ψ и ее дифференциал ecos φ dφ = cos ψdψ:

dx = C * (dφ / cosφ) - Ce{(cos ψ dψ)/(1 - sin²ψ)}.

Подставляя в последнее выражение 1 - sin²ψ = cos²ψ, получим

dx = C * {(dφ) / (cos φ)} - Ce{dψ) / (cos ψ)}.

Интегрирование последнего выражения дает:

x = C ln tg (45° + φ / 2) - Ce ln tg (45° + ψ /2).

Переписав полученное значение х в виде

x = C ln {tg(45° + φ / 2) / tg
e (45° + ψ / 2)}

и обозначив {tg(45° + φ / 2) / tg
e (45° + ψ / 2)} = U получим для х окончательное выражение

x = C ln U (80)

Таким образом, выявлен вид функции х = f (φ) для равноугольной цилиндрической проекции Меркатора.
Для завершения преобразований перейдем к аргументу φ, помня, что ранее была введена замена esin φ = sin ψ.

Так как

tg (45° + ψ / 2) = √ {(1 + sin ψ / (1 - sin ψ)} = √ {(1 + esinφ) / (1 - esin φ)},

то

tg
e (45° + ψ / 2) = {(1 + esin φ) / (1 - esin φ)}e/2

Теперь полный вид искомой функции будет

x = C ln tg (45° + φ / 2){(1 - esin φ) / (1 + esin φ)}
e/2 (81)


Для определения значения постоянной С поставим дополнительное условие: пусть масштаб на экваторе равен единице: n
о = 1. Это условие определяет положение цилиндра, на который проектируется земной эллипсоид: он касается его по экватору и, следовательно, на экваторе масштаб (nо) равен единице, а искажения отсутствуют. Положив, таким образом, по условию no = 1 и φ = 0, из выражения

m = n
o = 1 = C / Ncosφ 1 = C / N С=N. Но на экваторе N = а, следовательно, С=а.

Теперь найденная функция примет вид

x = a ln U (82)

Формула (82) определяет удаление параллели с широтой φ от экватора, выраженное в единицах длины, принятых для измерения большой полуоси земного эллипсоида а. Выведенная величина х измеряется вдоль меридиана, а потому ее принято называть меридиональной частью и обозначать буквой D. Если в уравнении (82) выразить а в экваториальных минутах, то формула меридиональной части примет вид:

D = a
экв.мин ln U (83)

Меридиональной частью (D) называется расстояние на проекции Меркатора по меридиану от экватора до данной параллели, выраженное в экваториальных минутах при масштабе на экваторе, равном единице. Значение и область применения меридиональных частей в картографии и в кораблевождении велики, так как в противоположность переменным численным значениям длины одной минуты меридиана земного эллипсоида меридиональные части выражаются в постоянных величинах, равных длине минуты экватора p
э применяемого эллипсоида. Для референц-эллипсоида Красовского рэ = а arc 1' = 1855,356 м. Постоянство единицы меридиональных частей представляет известное удобство при различных вычислениях.
В Картографических таблицах (1), а также в Мореходных таблицах МТ (табл. 26) приводятся меридиональные части для широт от 0 до 89°59'. В практике удобнее пользоваться формулой, где меридиональная часть выражена через экваториальные минуты и десятичные, а не натуральные логарифмы.
Поэтому с учетом того, что а = 1 / arc 1' = 3437,7468 и Моd= 0,434294, формулы (80) и (81) перепишем в следующем виде:



D = 7915',70447 lg tg (45° + φ / 2){(1 - esin φ) / (1 + esin φ)}<>; (84)
D = x = 7915',70447 lg U. (85)

Для Земли—шара (е=0, а=R) уравнения меридианов и параллелей в проекции Меркатора имеют вид

x = D = R ln tg (45° + φ / 2)
y = Rλ (86)

Таким образом, для равноугольной цилиндрической проекции Меркатора получены формулы:



Для сфероида:
x = a ln tg (45° + φ / 2){(1 - esin φ) / (1 + esin φ)}
e/2;
y = aλ
m = n = (a / N)sec φ
ω = 0.



Для шара:
x = R ln tg (45° + φ / 2);
y = Rλ
m = n = sec φ
ω = 0.




При построении карты в проекции Меркатора всегда указывается параллель, к которой отнесен главный масштаб. Эта параллель называется главной параллелью. Главные параллели установлены для отдельных морей и океанов, их перечень приведен в Картографических таблицах.



§ 28. Локсодромия

Траектория корабля, идущего неизменным курсом, представляет собой на Земной поверхности линию двоякой кривизны, пересекающую все меридианы под одним и тем же углом. Такая кривая называется локсодромией, что в переводе с греческого означает «косой бег» (рисунок). Локсодромия на поверхности Земли спиралеобразно приближается к полюсу, но никогда его не достигает.


Для вывода уравнения локсодромии рассмотрим элементарный треугольник АВF на земном эллипсоиде, образованный отрезками меридиана АF, параллели FB и локсодромии AF, составляющей с меридианами одинаковые углы К. По малости сторон треугольник АВF можно принять за плоский и тогда

tg K = rΔλ / MΔφ = NcosφΔλ / MΔφ.

Подставив в полученную формулу значения M и N, из формул (6) и (7), получим

tg K = {a(1 - e²sin²φ)3/2cosφΔλ / (1 - e²sin²φ)½ * a(1 - e²)Δφ} = {(1 - e²sin²) / (1 - e²)} * cos φ (Δλ / Δφ.

Переходя от элементарно малых величин Δφ и Δλ к их дифференциалам, последнее выражение перепишем в виде

dλ = tg K {(1 - e²) / (1 - e²sin²φ)} * (dφ / cos φ).

Заменив в числителе 1 - e² на 1 - e²(sin² + cos²φ), получим

dλ = tg K [ (1 - e²sin²φ) / (1 - e²sin²φ - e * { (ecos²φ) / (1 - e²sin²φ)} ] * (dφ / cos φ,

откуда

dλ = tg K { (dφ / cos φ) - e * { (ecos φ dφ) / (1 - e²sin²φ) }.

Интегрирование последнего выражения в пределах от A (φ1, λ1) до B (φ2, λ2) дает

λ2 - λ1 = {tg K ∫φ2φ1 dφ / cos φ} - e * tg K ∫φ2φ1 cos φ dφ / (1 - e²sin²φ


Произведя необходимые преобразования подынтегрального ∫φ2φ1 cos φ dφ / (1 - e²sin²φ) выражения, как показано в предыдущем параграфе, получим уравнение локсодромии АВ на карте проекции Меркатора с учетом сжатия Земли

λ2 - λ1 = tg K [ ln tg (45° + φ2) - ln tg (45° + φ1 / 2) ] - e tg K [ln tg (45° + ψ2 / 2) - ln tg (45° + ψ1) ,]
окончательный вид которого будет

λ2 - λ1 = tg K [ ln tg (45° + φ2 / 2){(1 - esin φ2) / (1 + e sin φ2)e/2 - ln tg (45° + φ1 / 2) * { ( - esin φ1 / (1 + e sin φ1)e/2]

где φ1, λ1, φ2, λ2 — координаты точек, через которые проходит локсодромия.

Без учета сжатия Земли уравнение локсодромии имеет вид

λ2 - λ1 = tg K [ ln tg (45° + φ2 / 2) - ln tg (45° + φ1 / 2) ] (88)

Выражения, стоящие в квадратных скобках уравнений (87) и (88), представляют собой разности меридиональных частей: D2 —для параллели с широтой φ2 и D1 — для параллели с широтой φ1.
Поэтому выражения (87) и (88) могут быть представлены в виде
λ2 - λ1 = tg K (D2 - D1). (89)

Последнее уравнение показывает, что локсодромия на проекции Меркатора изображается прямой линией. Иначе и быть не может, так как систему параллельных между собой прямых (меридианов) под одним углом пересекает только прямая линия. Приняв одну из точек, через которые проходит локсодромия, на экваторе, т. е. считая φ1 = 0 и λ1 = λo, а координаты произвольной точки В текущими, т.е. φ2 = φ и λ2 = λ, перепишем уравнение локсодромии в следующем виде (формулы 90):

— с учетом сжатия Земли:

λ = tg K [ ln tg (45° + φ / 2) * { (1 - e sin φ) / (1 + e sin φ) }e/2} ] + λo

— без учета сжатия Земли:

λ = tg K (45° + φ / 2) + λo

Выведенные уравнения позволяют по известным курсу К, долготе точки пересечения экватора λо и одной из текущих координат локсодромии вычислить вторую координату. Исследуем полученные уравнения с целью выявления свойств локсодромии.

1. Положив в формуле (87) или (88) K = 0° или K = 180°, найдем, что λ2 - λ1 = 0 или λ2 = λ1, т. е. λ = const. В этом случае локсодромия совпадает с меридианом и проходит через точки обоих полюсов.

2. При K = 90° или K = 270° tg K = ∞. Но так как разность долгот точек локсодромии λ2 - λ1 величина конечная, то один из членов формулы (87) или (88) дол-жен быть равен нулю, т. е. ln tg (45° + φ2 / 2) - ln tg (45° + φ1 / 2 ) = 0,
следовательно,
φ2 = φ1, то есть φ = const.

Локсодромия в этих случаях совмещается с параллелью или с экватором (при φ = 0°).

3. Уравнение (90) приведем к такому виду:
tg (45° + φ / 2) = e(λ - λo)ctg K                           (91)

Полученное уравнение показывает, что каждому значению широты φ соответствует только одно значение долготы λ, т. е. локсодромия пересекает каждую параллель только один раз. Придавая долготе значения λ, λ + 2π, λ + 4π, λ + 6π и т. д., будем получать каждый раз все новые возрастающие значения широты. Это означает, что локсодромия пересекает каждый меридиан бесчисленное множество раз, стремясь к полюсу и не достигая его. Исключение составляют лишь случаи, когда K =0° и K = 180°.


§ 29. Изменение масштаба на карте в проекции Меркатора

Расстояние по меридиану между двумя параллелями на проекции Меркатора определяется разностью меридиональных частей этих параллелей:

D2 - D1 = РМЧ (92)

Длина одной минуты дуги меридиана на данной параллели карты в проекции Меркатора, выраженная в миллиметрах, носит название меркаторской мили. Величиной меркаторской мили, графически изображенной на боковых (восточной и западной) рамках карты, пользуются как единицей линейного масштаба для измерения расстояний при работе на карте.
Численное значение меркаторской мили Θ (мм) на данной параллели φ, знаменатель частного масштаба на которой равен С, может быть вычислено по формуле
Θ = Δ 1' / C (93)

Точные значения Δ 1' (мм) даются в Картографических таблицах. Главный масштаб на проекции Меркатора относится только к главной параллели, и этот масштаб (численный) указывается в заголовке карты. Кроме того, на картах указывается масштаб по экватору. Главной может быть любая параллель, в том числе и экватор. В последнем случае цилиндр будет касаться земного эллипсоида (шара) по линии экватора. Во всех остальных случаях цилиндр будет секущим и главной параллелью проекции будут параллели сечения эллипсоида цилиндром.
Масштаб в проекции Меркатора, оставаясь постоянным по всем направлениям в любой точке, меняется от точки к точке с изменением широты. На главной параллели увеличение масштаба равно единице и искажения длин отсутствуют. Частный масштаб в любой точке карты равен увеличению масштаба. Чтобы установить зависимость масштаба на проекции Меркатора от широты, найдем отношение масштабов в двух точках проекции, расположенных на разных параллелях φ1 и φ2.
Масштабы в каждой из этих точек по всем направлениям одинаковы. Поэтому сравнивать можно любые частные масштабы в этих точках по параллелям или по меридианам.

Рассмотрим отношение масштабов по параллелям. Будем при этом считать, что экватор является главной параллелью, следовательно, масштаб по экватору равен главному масштабу и увеличение масштаба на экваторе равно единице.
Масштаб проекции в точке А' на параллели φ1 (рисунок) равен

n1 = A'B' / A'oB'o = adλ / r1dλ = a / N1 cos λ1,

где adλ —длина изображения отрезка параллели на проекции между заданными меридианами, равная длине отрезка экватора между теми же меридианами, так как по свойству проекции каждая параллель на проекции увеличивается или уменьшается до длины главной параллели;
r1dλ — длина отрезка параллели между заданными меридианами на условном глобусе.

Из приведенной формулы видно, что вдоль параллели масштаб изображения изменяться не будет, так как величины а, r1, φ1 остаются неизменными. Следовательно, параллели в проекции Меркатора являются линиями постоянного масштаба. С изменением широты радиус параллели меняется, уменьшаясь с увеличением φ, величина а при этом остается неизменной. Уменьшение знаменателя дроби приводит к увеличению частного, т. е. к увеличению масштаба с возрастанием широты.


По аналогии с предыдущим получим масштаб для точки А" на параллели φ2

n2 = A''B'' / A''oB''o = adλ / r2dλ = a / N2cos φ2

Сравним полученные масштабы в точках А' и А", взяв их отношение

n2 / n1 = a / N2cos φ2 :
N1cos φ1 / N2cos φ2

Без учета сжатия Земли аналогичное отношение масштабов на разных параллелях будет иметь вид

n2 / n1 = cos φ1 / cos φ2

Таким образом, показано, что с увеличением широты масштаб на проекции Меркатора увеличивается. Формулы (94) и (95) позволяют определить масштаб или увеличение масштаба на любой параллели, если известно увеличение масштаба на одной из них.
Так как в заголовке карты всегда приводится масштаб nо для главной параллели (φo), то при возникновении необходимости вычислить масштаб в любой точке проекции на параллели φ1 можно воспользоваться формулой

n1 / no = No cos φo / N1 cos φ1 (96)

с учетом сжатия Земли или формулой
n1 / no = cos φo / cos φ1 (97) без учета сжатия Земли.

Если в формулах (96), (97) от масштабов n1 и no перейти к знаменателям числовых масштабов С1 и Со, то они примут вид:

— с учетом сжатия Земли (98)

Co / C1 = Nocos φo / N1cos φ1,

- без учета сжатия Земли (99)

Co / C1 = cos φo / cos φ1.

Полученные формулы выражают так называемый модуль параллели Ø —число, разделив на которое знаменатель главного масштаба, получают знаменатель частного масштаба на любой другой параллели.

Из определения следует, что C = Co / Ø, откуда

Ø = Co / C = No cos φo / N cos φ = ro / r = ro arc 1' / r arc 1' . (100)

Модуль параллели Ø легко вычислить по любому из последних равенств. В приведенных равенствах использована величина r arc 1' = P, которая представляет собой длину одной минуты дуги параллели в мм. Величины P для широт от 0 до 89° 55' приводятся в Картографических таблицах.
Таким образом, модуль параллели V можно вычислить с помощью Картографических таблиц по формуле Ø = Po / P, а в случае отсутствия таблиц рассчитать по формуле

Ø = No cos φo / N cos φ = ro

или, если принимать Землю за шар,

Ø = cos φo / cos φ. (101)

Пример.
Требуется рассчитать частный масштаб карты в проекции Меркатора по параллели с широтой φ = 56°N, если главный масштаб по параллели с широтой φo = 60° N равен µo = 1 : Co = 1:200000.

Решение.
1. Из Картографических таблиц выбираем Ро = P60 =930015 мм и P56 = 1039897 мм.
2. Модуль параллели Ø для широты φ = 56° равен

Ø = Po / P = 930015 / 1039897 = 0, 89424.

3. Знаменатель частного масштаба для параллели φ =56° N равен С = Со: Ø = 200000 : 0,89424 = 223630, а искомый масштаб будет µ = 1 : 223630.

Полосы широт практически постоянного масштаба.

Длина меркаторской мили с увеличением широты непрерывно возрастает. При пользовании картой это обстоятельство принимается во внимание и отрезки длин — расстояний на карте в проекции Меркатора — измеряются той частью линейного (широтного) масштаба, который расположен около средней параллели измеряемого отрезка. При построении линейного (широтного) масштаба вертикальную рамку нужно разбить на отрезки, равные меркаторской миле, имеющей в различных широтах разную длину. Наиболее строгим и точным решением такой задачи был бы расчет картографических абсцисс x = f (φ) для всех параллелей от широты южной рамки до широты северной рамки карты с широтным интервалом в одну минуту. Однако такой расчет является чрезвычайно сложным и трудоемким. Этого и не требуется для практических задач. Поэтому при составлении карты параллели проводятся через определенные промежутки (широтный интервал) Δ φ, внутри которых деление рамки на минуты осуществляется разбивкой их на равные части, соответствующие средней длине меркаторской мили в данном промежутке. Внутри такой полосы широт Δ φ изменение масштаба настолько мало, что оно не превышает ошибок графических построений. Какова же та разность широт, в пределах которой длина меркаторской мили без ущерба для точности графических построений может быть принята постоянной величиной.
Проведенное профессором В. В. Каврайским исследование позволило установить зависимость полосы широт практически постоянного масштаба от широты и масштаба карты. Эта зависимость выражена следующей формулой:

Δφ' = √ {(CNctg φN) / 675} или

Δφ' = √ { (C1 ctg φ1) / 675} (102)

где C1 — знаменатель частного масштаба на рамке карты в широте φ1;
φ1 — широта ближайшей к полюсу рамки карты.

В готовом виде величины промежутков практически постоянного масштаба приводятся в Картографических таблицах. Рассчитанный (или выбранный из таблиц) промежуток практически постоянного масштаба округляется в меньшую сторону до значения, кратного 5' или 10', и принимается затем в качестве широтного интервала, через который на карте проводятся параллели картографической сетки. Если выбранный или рассчитанный широтный интервал окажется меньше 5', то округление производится также в меньшую сторону до значения, кратного одной целой минуте.

Пример.
Рассчитать величину широтного интервала, через который должны быть проведены на карте параллели, чтобы в промежутках между ними меркаторскую милю можно было считать величиной постоянной. Масштаб карты 1 :300 000 по главной параллели 60° и район картографируемой местности ограничен параллелями φS = 59° N и φN = 62°30' N.

Решение.
1. По формулам CN = Co / Ø и Ø = Po / PN находим CN.
Po = 930015, lg Po = 5,96849.
PN = 858973, lg PN = 5,93398/
lg Ø = 0, 03451
Co = 300000, lg Co = 5,47712
lg CN = 5,44261
CN = 277080.

2. По формуле Δ φ' = √ { (CNctg φN) / 675} находим Δ φ'.
CN = 277080, lg CN = 5,44261
φN = 62° 30', lg ctg φN = 9,71648
Σ = 5,15909
lg 675 = 2,82930
2 lg Δ φ' = 2,32979
lg Δ φ' = 1,16489
Δ φ' = 14,6'.

Округляя полученный интервал Δ φ' в меньшую сторону, принимаем Δ φ' = 10'.