Учебное пособие Уфа 2008 удк 531(075. 3) Ббк 22. 2я73

Вид материалаУчебное пособие
Подобный материал:
1   ...   5   6   7   8   9   10   11   12   ...   23


При этом центр масс необязательно совпадает с какой-либо материальной точкой системы.

Если положения точек А и В задаются радиусами-векторами и , то положение центра масс определяется радиусом-вектором . Соединим массы и с центром масс точек отрезками и , направленными от точек А и В к центру масс, как показано на рисунке. Тогда

и (5.2)


Умножим первое уравнение на , а второе на :

и

и сложим их: (5.3)

Но с учетом определения (5.1) и направлений векторов и имеем, что . Тогда из (5.3) получим соотношение:

(5.4)

или (5.5)

Формулы (5.4) и (5.5) могут быть обобщены на любое количество материальных точек. При этом радиус-вектор центра масс системы, состоящей из n материальных точек, определяется формулой

(5.6)

Здесь – масса точки с номером i, – её радиус-вектор, а – полная масса системы точек.

Из формулы (5.6) следуют формулы для вычисления координат центра масс через координаты и массы точек системы:

, , (5.7)

Скорость центра масс системы материальных точек также выражается через массы и скорости отдельных материальных точек системы. Действительно, в силу определения скорости запишем выражение для скорости центра масс в виде:

(5.8)

или

(5.9)

Так же может быть найдено и выражение для ускорения центра масс системы: , т.е. (5.10)

Величины представляют собой импульсы отдельных точек, поэтому уравнение (5.9) можно переписать в виде:

, (5.11)

где – импульс системы материальных точек. Таким образом, импульс системы материальных точек равен произведению массы системы на скорость её центра масс.

Дифференцируя (5.11), находим уравнение движения системы материальных точек в следующем виде:

(5.12)

Отсюда следует, что центр масс системы движется как материальная точка, масса которой равна суммарной массе всей системы.