Специальная математика

Вид материалаКонспект

Содержание


5.4. Группа Диэдра (D3)
Подобный материал:
1   ...   21   22   23   24   25   26   27   28   ...   39

5.4. Группа Диэдра (D3)



D3 = {I, a, a2, b, ba, ba2 }

Для этой группы будут следующие определяющие соотношения:

a3 = b2 = (ba)2 = I

b










Таблица умножения данной группы:




а




I

a

a2

b

ba

ba2

I

I

a

a2

b

ba

ba2

a

a

a2

I

ba2

b

ba

a2

a2

I

a

ba

ba2

b

b

b

ba

ba2

I

a

a2

ba

ba

ba2

b

a2

I

a

ba2

ba2

b

ba

a

a2

I


В каждой строке и каждом столбце элементы не повторяются.

a. H = {I, B} пусть f(I) = f(b) = I - некоторый гомоморфизм

a = Ia = (ba)2a = babaa = baba2

f(a) = f(baba2) = f(b) f(a) f(a) f(b2) = f(a)f(a2) = (по предположению f(b) = I )

= f(a3) = f(I) = I

f(a2) = f(a) f(a) = I I = I

f(ba) = f(b) f(a) = I I = I

f(ba2) = f(b) f(a2) = I I = I


Т.е. всю группу D3 можно отобразить в единичный элемент.

а) f f

H = {I, b} D3  G : D3  I

K = {I, a, a2} f f

D3  G: D3  {I, f(b)}


f(I) = f(a) = f(a2) = I

I

f(ba) = f(b)f(a) = f(b)

f(ba2) = f(b) = f(b)f(b) = f(b2) = I


Группы, имеющие единственный (отличный от единицы) элемент такой, что какая-то степень этого элемента дает I, называется циклической группой n-ой степени.

Если для какой-то группы мы осуществляем гомоморфное отображение, причем какая-то ее подгруппа целиком отображается в единичный элемент группы, то такая подгруппа есть ядро гомоморфизма. Обозначается f 1(I).