«Виды теплопередачи»
Вид материала | Реферат |
СодержаниеТепловое излучение Закон теплопроводности Фурье P — полная мощность тепловых потерь, S Коэффициенты теплопроводности различных веществ |
- Тема урока: Виды теплопередачи: конвекция, излучение, 50.29kb.
- Моделирование и разработка методов расчета процессов теплопередачи в кристаллизаторе, 251.19kb.
- Воображение краткое содержание Определение и виды воображения, 190.84kb.
- Сорбционные свойства и проницаемость материалов. Основные характеристики, приборы, 54.52kb.
- Сущность, структура и виды цен виды цен и их регулирование, 1550.72kb.
- Конспект урока физики Тема: Механическое движение и его виды, 84.19kb.
- 1. Теория государства и права, 63.79kb.
- Инструкция к заполнению (после ознакомления удалить), 50.83kb.
- Виды речевой деятельности, 63.92kb.
- Налоговое планирование. Понятие налогового планирования и его виды, 30.77kb.
Муниципальное общеобразовательное учреждение «Лицей №43»
Реферат
на тему «Виды
теплопередачи»
Выполнила:
ученица 10 класса
Родина Марина
Проверил:
Ивлев В. И.
Саранск, 2010
Теплопередача, или теплообмен - физический процесс передачи тепловой энергии от более горячего тела к более холодному либо непосредственно (при контакте), либо через разделяющую (тела или среды) перегородку из какого-либо материала. Когда физические тела одной системы имеют разную температуру, то происходит передача тепловой энергии, или теплопередача от одного тела к другому до наступления термодинамического равновесия. Самопроизвольная передача тепла всегда происходит от более горячего тела к более холодному, что является следствием второго закона термодинамики (все самопроизвольные процессы в природе идут с увеличением энтропии). Теплопередачу невозможно остановить, можно только замедлить её. Теплообмен определяет или сопровождает многие процессы в природе (например, ход эволюции звёзд и планет, метеорологические процессы на поверхности Земли и т. д.), в технике и в быту. Во многих случаях, например при исследовании процессов сушки, испарительного охлаждения, диффузии, теплопередача рассматривается совместно с массообменом. Теплообмен между двумя теплоносителями через разделяющую их твёрдую стенку или через поверхность раздела между ними называется теплопроводностью. Различают три вида теплопередачи: теплопроводность, конвекция и излучение.
Тепловое излучение — электромагнитное излучение со сплошным спектром, испускаемое веществом и возникающее за счёт его внутренней энергии. В физике для корректного расчёта теплового излучения принята модель абсолютно чёрного тела, тепловое излучение которого описывается законом Стефана — Больцмана. ( Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела: P = SεσT4, где ε - степень черноты (для всех веществ ε < 1, для абсолютно черного тела ε = 1).
Теплопроводность — это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.
Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.
Закон теплопроводности Фурье
Закон теплопроводности Фурье в интегральной форме:
![](images/39077-nomer-17c70de5.png)
где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепад температур граней, h — длина параллелепипеда, то есть расстояние между гранями,
![](images/39077-nomer-m42eadecf.png)
Коэффициент теплопроводности вакуума почти ноль (тем ближе к нулю, чем глубже вакуум). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее тепло в вакууме передаётся с помощью излучения. Поэтому для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность хуже излучает и лучше отражает), а воздух между ними откачивают.
Коэффициенты теплопроводности различных веществ
Материал | Теплопроводность, Вт/(м·K) |
Алмаз | 1001—2600 |
Серебро | 430 |
Медь | 382—390 |
Золото | 320 |
Алюминий | 202—236 |
Латунь | 97—111 |
Железо | 92 |
Платина | 70 |
Олово | 67 |
Сталь | 47 |
Кварц | 8 |
Стекло | 1 |
Вода | 0,6 |
Кирпич строительный | 0,2—0,7 |
Пенобетон | 0,14—0,3 |
Газобетон | 0,1—0,3 |
Дерево | 0,15 |
Вата хлопковая | 0,055 |
Свежий снег | 0,10—0,15 |
Шерсть | 0,05 |
Минеральная вата | 0,045 |
Пенополистирол | 0,04 |
Пеноизол | 0,035 |
Воздух (300 K, 100 кПа) | 0,026 |
Воздух (сухой неподвижный) | 0,024—0,031 |
Аргон | 0,0177 |
Аэрогель | 0,017 |
Ксенон | 0,0057 |
Вакуум (абсолютный) | 0 (строго) |
![](images/39077-nomer-3e542739.jpg)
Конвекция (от лат. convectio — принесение, доставка) — явление переноса теплоты в жидкостях или газах путем перемешивания самого вещества (как вынужденно, так и самопроизвольно). При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием каких-то внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной.
Существует также естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и погружаются вниз, после чего процесс повторяется снова и снова. При некоторых условиях процесс перемешивания самоорганизуется в структуру отдельных вихрей и получается более или менее правильная решётка из конвекционных ячеек. Естественной конвекции обязаны многие атмосферные явления, в том числе, образование облаков. Благодаря тому же явлению движутся тектонические плиты. Конвекция ответственна за появление гранул на Солнце.
Явление конвекции можно объяснить законом Архимеда и явлением теплового расширения тел. При повышении температуры объем жидкости возрастает, а плотность уменьшается. Под действием силы Архимеда менее плотная нагретая жидкость поднимается вверх, а более плотная холодная жидкость опускается вниз. Если же жидкость нагревать сверху, то менее плотная теплая жидкость там и останется и конвекция не возникнет. Так устанавливается круговорот жидкости, сопровождающийся переносом энергии от нагретых участков к более холодным. Совершенно аналогичным образом возникает конвекция в газах.
На рисунке – тень руки с зажженной спичкой. Волнистые тени над пламенем – струйки поднимающегося теплого воздуха. Такие тени легко появляются на стене темной комнаты при освещении горящей спички фонарем.
![](images/39077-nomer-m73979c80.png)
Такой процесс часто называется естественной конвекцией. Для её возникновения требуется подогрев жидкости снизу (или охлаждение сверху), причем нагрев в разных участках должен быть неравномерным.
Кроме естественной конвекции, возможна и вынужденная. При вынужденной конвекции потоки нагретой (или охлажденной) жидкости или газа переносятся под действием насосов или вентиляторов. Такая конвекция используется в тех случаях, когда естественная конвекция оказывается недостаточно эффективной, а также в состоянии невесомости, когда естественная конвекция невозможна.
С точки зрения термодинамики конвекция – способ теплопередачи, при котором внутренняя энергия переносится потоками неравномерно нагретых веществ.
Теплообмен конвекцией часто встречается в быту и в природе. Например, отопительные батареи-радиаторы располагаются вблизи пола под подоконником. Поэтому нагреваемый ими воздух, поднимаясь вверх, смешивается с холодным воздухом, опускающимся от окна. В результате в комнате устанавливается почти равномерная температура.
Типичными примерами конвекции в атмосфере являются ветры, в частности бризы и муссоны. Нагреваясь над одними участками Земли и охлаждаясь над другими, воздух начинает циркулировать, перенося с собой энергию и влагу. Явление это весьма сложное. На процесс естественной конвекции накладывается ряд факторов, например, суточное вращение Земли, рельеф местности, влияние морских течений и т. д. Также явление конвекции лежит в основе горообразования, процессов парения птиц, выхода дыма из труб и кратеров вулканов и др.