Учебно-методический комплекс по дисциплине «концепции современного естествознания» для всех специальностей

Вид материалаУчебно-методический комплекс

Содержание


Основные концепции экологии и эволюционной теории
Подобный материал:
1   ...   46   47   48   49   50   51   52   53   54

Основные концепции экологии и эволюционной теории

Популяции

Особи одного вида, населяющие одну территорию / акваторию объединяются в популяции. На уровне популяций совершаются элементарные эволюционные явления и происходит микроэволюция. Локальную воспроизводящуюся популяцию можно рассматривать как плацдарм для микроэволюции.

Популяция — достаточно многочисленная совокупность особей определённого вида, в течение большого числа поколений населяющая определённое пространство (внутри которого нет установившихся изоляционных барьеров) и отделенная от таких же совокупностей особей данного вида той или иной степенью давления тех или иных форм изоляции. Это определение приложимо только к двуполым скрещивающимся формам. Популяцией у организмов, размножающихся бесполым путем или путем облигатного партеногенеза или самооплодотворения, нужно считать группу особей клона или чистой линии (или смеси клонов и чистых линий), занимающих определённый ареал и отделенную от таких же совокупностей особей пространством с меньшей численностью или отсутствием особей данного вида. Такое определение соответствует широкому кругу реально существующих популяций.

Целесообразно представлять себе популяции и популяционные системы в виде иерархии — от случайно скрещивающейся группы до вида. Скрещивающаяся популяция — популяционная единица, имеющая некую локальную протяженность в этой непрерывной иерархии. Скрещивающаяся популяция представляет собой репродуктивную единицу. У организмов с половым размножением — это сообщество особей, связанных между собой узами скрещивания и взаимоотношениями родители — потомки. У организмов с бесполым размножением сохраняются связи родители — потомки, но перекрестные связи между особями, обусловленные скрещиванием, сильно ослаблены. Не следует, однако, полностью исключать наличие у бесполых организмов таких связей, поскольку у многих организмов, которые обычно размножаются бесполым путем, существуют те или иные парасексуальные способы размножения или же время от времени происходит возврат к половому размножению. Популяция, как правило, представляет собой свободно скрещивающуюся группу, независимо от того, происходит ли скрещивание регулярно или эпизодически, и во всех случаях это некая репродуктивная единица. Популяция представляет собой также экологическую единицу. Составляющие популяцию особи генотипически сходны по своей экологической толерантности, занимают определённую область в той или иной экологической нише или местообитании и предъявляют сходные требования к условиям среды.

Реально существующие популяции очень разнообразны по величине и форме. Структура популяции слагается из четырёх главных компонент: величины популяции, пространственной конфигурации, системы размножения и скорости расселения. Структура популяции оказывает влияние на характер её изменчивости. Популяции живых существ обычно характеризуются полиморфизмом составляющих их особей. Согласно определению, полиморфизм — это существование в популяции двух или более резко различающихся (прерывистых) форм, при котором частота более редкой формы определяется не одним лишь мутированием. Иными словами, полиморфизм — это такая изменчивость в локальной воспроизводящейся популяции, при которой проявляется чётко выраженное или резкое менделевское расщепление.

Такое определение полиморфизма не позволяет относить к нему некоторые типы изменчивости. Оно исключает чисто фенотипическую изменчивость (поскольку это негенетическая изменчивость); оно исключает географическую изменчивость (которой не существует в одной популяции); оно исключает полигенную изменчивость (при которой не происходит расщепления на резко различающиеся классы); и, наконец, оно исключает генетическую изменчивость, обусловленную новыми или повторными мутациями.

Явление полиморфизма подводит нас к концепции генофонда, которая в свою очередь даёт возможность по-иному взглянуть на локальную воспроизводящуюся популяцию. Рассмотрим популяцию, полиморфную по гену A и содержащую аллели A1, A2 и A3. В такой популяции будут возникать диплоидные генотипы A1A1, A1A2, A2A2 и т. п., и обусловленные этими генотипами формы будут представлены в любой выборке особей, однако ясно, что одна из главных черт данной популяции — это генетический полиморфизм, лежащий в основе наблюдаемого разнообразия. Можно сказать, что генофонд такой популяции содержит аллели A1, A2 и A3. Кроме того, эти аллели встречаются в генофонде с определённой частотой. Следовательно, популяцию можно описать количественно, используя типы генов, содержащихся в её генофонде, и их частоты.

Следует отметить, что концепция генофонда шире, чем концепция полиморфизма. Генофонд популяции слагается из всех имеющихся в ней генов. Так, генофонд нашей гипотетической популяции может быть полиморфным по гену А, содержать редкий мутантный аллель гена В и быть мономорфным по генам С и D.

Теперь мы можем описать или, по крайней мере, охарактеризовать локальную воспроизводящуюся популяцию как группу особей, имеющих общий генофонд. Особи, из которых состоит данная популяция, в каждом данном поколении представляют собой различные генотипические продукты гамет, взятых из генофонда этой популяции в предшествующем поколении.

Генофонды свободно скрещивающихся животных и растений обычно содержат, как было отмечено выше, во многих генных локусах множество аллелей. Таким образом, в результате свободного скрещивания возникают высокогетерозиготные диплоидные особи. Многие аллели в каждом локусе уже подвергались в предыдущих поколениях отбору на хорошую комбинационную способность в диплоидных гетерозиготных генотипах. Особи с нормальным фенотипом и нормальной жизнеспособностью представляют собой гетерозиготы. Кроме того, нормальное фенотипическое состояние создаётся различными гетерозиготными комбинациями генов. Об этом свидетельствуют результаты инбридинга таких свободно скрещивающихся диплоидных организмов.

Установлено, что у широкого круга свободно скрещивающихся диплоидных организмов хорошо забуференный нормальный фенотип определяется гетерозиготностью, имеющей широкую основу. Нормальная особь — это не какая-то одна гетерозиготная форма, но любая из многочисленных возможных гетерозиготных комбинаций. Нормальное состояние может быть достигнуто разными путями, что наводит на мысль о его обусловленности гетерозиготностью как таковой.

Видообразование

Если популяции организмов, относящихся к одному виду попадают в разные условия, со временем между ними происхождит эволюционное расхождение – дивергенция. Дивергенция между близкими эволюционными линиями, если она протекает постепенно и продолжается долго, проходит с течением времени через ряд стадий. Общая предковая популяция даёт начало двум или более локальным расам, географическим расам, полувидам, биологическим видам и группам видов, последовательно сменяющим друг друга. Дивергенция может достигать самых высоких уровней — от рода до класса и типа.

Популяционные единицы и таксономические, категории представляют собой отдельные стадии процесса эволюционной дивергенции. Высшие таксономические категории представляют собой продукты макроэволюции. Нас здесь интересует процесс дивергенции на низших ступенях среднего уровня, т. е. на уровне рас и видов. Дивергенция на этих уровнях относится к проблемам видообразования.

Дивергенция на уровне рас и видов проявляется в трёх главных направлениях. Переход от низших к высшим уровням на ветвящемся филогенетическом древе сопровождается: 1) возрастанием дифференциации генотипа; 2) возрастанием морфологической, физиологической и поведенческой дифференциации; 3) более сильной изоляцией.

В различных группах организмов три перечисленных выше набора признаков могут эволюционировать с разными скоростями. В некоторых группах относительно небольшая генотипическая дифференциация выливается в резко выраженную фенотипическую дифференциацию, тогда как в других группах наблюдается широкая генотипическая, но незначительная фенотипическая дифференциация. Как показало рассмотрение большой выборки групп растений и животных, репродуктивная изоляция лишь очень слабо коррелирует со степенью фенотипической дифференциации.

Различия наблюдаются также в последовательности стадий. Некоторые из средних стадий видообразования в ряде случаев выпадают. Возможны также реверсии процесса дивергенции.

Образование рас, будь то локальные или географические, непрерывные или разобщённые расы, происходит под действием тех же эволюционных сил, которые обусловливают микроэволюционные изменения внутри популяций. К основным процессам, создающим изменчивость, относятся мутагенез, поток генов и рекомбинация, а к процессам, сортирующим возникшие изменения, — отбор и дрейф генов. Образование рас происходит в тех случаях, когда эти процессы протекают в разных направлениях (т. е. создают различные генофонды) в географически различных областях ареала данного вида.

Макроэволюция

Макроэволюция подразумевает изменения гораздо большего масштаба, чем те, которые происходят при микроэволюции и видообразовании. Изменения макроэволюционного уровня состоят в развитии признаков, по которым различаются такие крупные группы, как роды, семейства, отряды, классы и типы. Подобные события происходят в геологическом масштабе времени.

Методы исследования, применяемые при изучении макроэволюции, не могут не отличаться от тех, которые используются при изучении микроэволюции и видообразования. Генетика, экология и систематика на уровне низших категорий — главные подходы к изучению микроэволюции и видообразования, тогда как всё, что нам известно о макроэволюции, получено в результате палеонтологических и сравнительно-морфологических исследований. Работы по генетике популяций и близким к ней областям позволяют получить прямые данные о факторах эволюции. Однако сведения о крупных событиях в процессе органической эволюции дают палеонтология и сравнительная анатомия.

Изучением эволюционной биологиии на макроуровне и на других уровнях обычно занимаются разные группы исследователей, и их представления о роли эксперимента, масштабах времени и других предметах нередко расходятся. Многие палеонтологи и морфологи старшего поколения недооценивали значение генетических исследований для эволюционной теории; в свою очередь биологи, изучающие популяции ныне живущих организмов, часто имеют довольно смутное представление о временном элементе макроэволюции. Источником многих противоречий в эволюционной биологии служат характерные различия между макро- и микроэволюционистами в отношении методов исследования, образа мышления и общей подготовки.

Одна из проблем эволюционной биологии касается того, представляет ли собой макроэволюция просто продолжение микроэволюции или же между этими двумя процессами имеется какоето существенное различие. Многие эволюционисты, в том числе все сторонники синтетической теории, полагают, что интерпретацию явлений макроэволюции следует основывать на наших представлениях о процессах, происходящих на микроэволюционном уровне. Эту точку зрения хорошо сформулировал Добржанский:

«Опыт показывает…, что единственный путь к пониманию механизмов макроэволюционных изменений, для которых необходимы геологические масштабы времени, — это доскональное изучение микроэволюционных процессов, наблюдаемых на протяжении одной человеческой жизни и нередко контролируемых волей человека».

Изложенная выше точка зрения вызывает, однако, возражения со стороны фракции меньшинства в каждом почти поколении эволюционистов. Гольдшмидт настаивал на том, что макроэволюционное изменение детерминируется особыми процессами — системными мутациями и скачкообразными изменениями, которые не действуют на микроэволюционном уровне. В последние годы Стэнли и Гулд придерживаются мнения о существовании коренного различия между микро- и макроэволюцией. Гулд утверждает, что попытка объяснить макроэволюцию на основе микроэволюции представляет собой редукционизм и неоправданную экстраполяцию и что такой подход ошибочен.

Экосистемы

Решающее значение в эволюции живых существ играют условия среды их обитания, как абиотические, так и биотические. Если мутации и рекомбинации являются внутренними механизмами эволцюции живых существ и создают определенный уровень изменчивости в популяциях, то действие отбора и дрейфа генов отражают действие внешних факторов на организмы и задают направление эволюционному процессу.

Организмы, обитающие на одном участке суши или акватории находятся в тесной взаимосвязи друг с другом. Системы совместно обитающих популяций различных видов действуют как энергетические машины, в которых внешняя энергия усваивается автотрофными продуцентами (фото- и хемосинтетиками), использующими ее для производства органического вещества (первичной продукции сообщества) из неорганического. Это вещество (биомасса) и запасенная в нем энергия используются далее гетеротрофными консументами. Биогенная мертвая масса (органические выделения, а после гибели организма и вещество его тканей) частью также потребляется консументами, а частью разлагается до неорганических веществ, доступных для продуцентов, редуцентами (бактериями и грибами), осуществляющими таким образом рециклинг. Различные виды исполняют различные функции в поддержании круговорота и взаимодействуют, прямо и косвенно ограничивая и модифицируя деятельность друг друга. Взаимодействия между ними не сводятся к потреблению одних организмов другими, а имеют весьма сложный и разноплановый характер. Чрезвычайно изящная и простая классификация этих взаимодействий разработана В.Н. Беклемишевым (1970), разделившим их на трофические (по питанию), топические (по местообитанию), форические (по переносу, например взаимодействия между растением и его опылителем) и фабрические (по материалу для сооружений, например между птицей и организмами, производящими материалы, используемые ею для постройки гнезда). Внутри любого из этих типов взаимодействий различаются прямые (непосредственное использование одного вида организмов или его метаболитов другим) и косвенные (воздействие третьего вида на отношения двух других, связанных прямой связью, например через влияние на численность одного из них или его доступность для другого).

Как правило, один вид входит в состав различных сообществ, в которых его экологические характеристики отличаются, и ни в одном из них не проявляет всего диапазона своих свойств. Поэтому структуру сообщества удобнее описывать не в терминах видов или популяций, а в терминах реализованных экологических ниш. Ниша понимается как многомерный объем в экологическом пространстве, ограниченный свойствами вида (или популяции) и факторами, лимитирующими его существование (по часто используемому образному выражению, как "экологическая профессия" вида), а не как предоставляемая экосистемой потенциальная возможность эксплуатации той или иной части пространства ресурсов. Такое понимание ниши, до известной степени контринтуитивное ("свободных" ниш в этом смысле не бывает), стало общепринятым после работ И. Хатчинсона (1965).

Наиболее тесно связанные ниши образуют структурно-функциональные блоки сообщества, такие как синузии (совокупности автотрофов, сходным образом использующих сходный ресурс, например растения одной жизненной формы), гильдии (аналогичные совокупности гетеротрофов, например, потребители семян или листьев одного вида растений), консорции (совокупности ниш, прямо связанных с одной и той же центральной нишей - ядром консорции), трофические (пищевые) сети (совокупности трофически связанных ниш, через которые энергия передается от автотрофа до высших консументов), трофические уровни (совокупности ниш, занимающих аналогичное положение в разных трофических сетях, например, всех автотрофов или всех хищников одного порядка), регуляторные блоки (системы ниш, оказывающих взаимное регулирующее действие друг на друга, например хищник-жертва или паразит-хозяин), микросукцессии (совокупности, сменяющиеся в ходе переработки одного субстрата, например, разлагающегося ствола или трупа) и т. д. Обычно в блоке выделяются одна или несколько ядерных ниш, осуществляющих основную экологическую работу, и сателлитные (второстепенные) ниши.

Ниши могут перекрываться или быть полностью разделенными в лицензионном пространстве. Блоки частью иерархически соподчинены (например, гильдии различных порядков, такие как потребители молодых листьев, потребители листьев вообще, потребители одного и того же растения и трофический уровень растительноядных организмов, являющийся по существу гильдией высшего порядка), а частью взаимопересекаются (например, консорции и трофические сети пересекают различные трофические уровни). Каждая ниша входит в ряд блоков одновременно. В этом отношении структура биоценоза напоминает структуру человеческого общества, каждый член которого также входит одновременно во множество частично соподчиненных, частично пересекающихся групп (семейных, территориальных, профессиональных, конфессиональных и т.д.).

Биогеохимический цикл сообщества часто не сбалансирован: одни ресурсы перепотребляются, другие перепроизводятся. Этот дисбаланс приводит к временной динамике экосистемы – сукцессии в узком смысле как автогенной (обусловленной их собственной деятельностью) смене одних сообществ другими. Региональная совокупность коадаптированных сообществ, одни из которых заселяют участки, измененные деятельностью других и ставшие для них непригодными, образует сукцессионную систему. Сукцессия стереотипна, детерминирована и часто завершается устойчивой (климаксной) стадией с приблизительным балансом производства и потребления ресурсов. В отсутствии климакса сукцессии цикличны. Внешние нарушения (смыв, сползание по градиенту силы тяжести, пожары, выдувание и т.д.), устраняющие накопленную сообществом мертвую массу, противодействуют эндогенному тренду сукцессии и возвращают ее к более ранним стадиям. В ареале системы поддерживается набор сукцессионных стадий, соответствующих характерным для региона типам нарушений, но их пространственное размещение постоянно меняется в связи с динамикой нарушений и репарирующей их сукцессии.

Сукцессионные системы можно рассматривать как сообщества высшего порядка, в которых отдельные сообщества исполняют роль функциональных блоков. Они также образуют континуум по степени коадаптированности от стохастически сменяющихся абсолютных группировок до полностью коадаптивных идеальных сукцессионных систем, завершающихся идеальными климаксами. Реальные системы в той или иной мере приближаются к этим предельным состояниям.

Биосфера

Экосистемы не являются высшей ступенью организации биологических систем. Экосистемы нашей плантеы формируют глобальную систему. Живые организмы совместно со средой обитания, с которой они неразрывно связаны путем обмена веществ и энергетически, образуют особую оболочку Земли — биосферу. Современная биосфера нашей планеты со всем ее населением явилась результатом длительной эволюции живого вещества и изменения всей окружающей среды.

Представление о биосфере впервые было освещено в трудах знаменитого французского натуралиста Ж. Б. Ламарка. В геологические науки биосфера была включена по инициативе австрийского геолога Э. Зюсса (1834—1914). Однако грубокое учение о биосфере как качественно особой в энергетическом и геохимическом отношении оболочке Земли было развито в нашей стране выдающимся натуралистом В. И. Вернадским (1863—1945). В дальнейшем это учение пополнилось новыми идеями, разработанными А. П. Виноградовым, В. В. Ковальским, А. А. Полыновым, А. И. Перельманом и другими, главным образом советскими, учеными.

Биосфера представляет собой сложнейшую организацию материи, в которой различные ее неорганические формы движения связаны с живым веществом. Миллионы видов организмов, существующих в биосфере, живут не сами по себе, а в закономерных ассоциациях многочисленных особей — биоценозах. По существу, зарождение первых живых организмов на нашей планете было появлением биоценозов. Иначе говоря, любая форма жизни связана с определенной средой, и, таким образом, проблема происхождения жизни есть проблема происхождения биосферы.

С течением геологического времени эволюция живых организмов дала бесчисленное множество видов. Возникновение фотосинтеза произошло около 3,5 млрд. лет назад, а возможно, еще раньше. Фотосинтез в биосфере первоначально осуществлялся синезелеными водорослями и их предками. Возникновение фотосинтеза привело к появлению свободного кислорода и позволило большинству живых существ усовершенствовать свой энергетический обмен, надстроив над прежним анаэробным обменом новые системы кислородного дыхания. Биосфера приобрела мощный кислородный потенциал, определивший общий характер геохимических процессов, миграцию химических элементов и формы их нахождения. В криптозое - докембрии жизнь развивалась в морских условиях и в общем довольно медленно.

В кембрийском периоде появились высшие беспозвоночные животные, которые строили свой скелет из углекислого кальция. Усилилось образование биогенных известняков из их остатков. Развитие скелета у позвоночных животных привело к усилению миграции фтора и фосфора. Выход растений на сушу в девонском периоде определил резкий перелом в развитии биосферы в целом. Он открыл широкие возможности для дальнейшего всестороннего развития животных, а также растений. Вначале появились папоротники, хвощи, семенные папоротники, что усилило миграцию углекислоты. Развитие наземной растительности и образование почв создали предпосылки для выхода на поверхность континентов животных. В результате эволюции растительного мира в мезозойской эре возникли леса хвойных и цветковых растении, полные жизни. В конце мезозоя и в кайнозое усилилась миграция биофильных элементов в связи с появлением птиц. Таким образом, живое вещество охватило нижнюю часть атмосферы - тропосферу. Птицы, как и другие летающие организмы, стали играть видную роль в обмене веществ между сушей и морем. В данном случае роль птиц оказалась обратной роли рек - в переносе вещества из морской среды на сушу, поскольку многие водоплавающие их представители питались рыбой.

Наконец, самые крупные изменения в биосфере Земли наступили в связи с возникновением и развитием человека. В недрах биосферы первоначально возникла антропосфера, начало которой положено расселением первобытного человека по всей поверхности континентов. Человек стал относительно независимым от климата. Однако в ходе развития производительных сил и цивилизации антропосфера, выражающая стихийную деятельность человеческого общества, должна перейти в ноосферу - новую оболочку Земли - область сознательной деятельности человечества.

Термин ''ноосфера'' был предложен французскими учеными в 1927 г. Э. Леруа (1870-1954) и П. Тейяром де Шарденом (1881-1955) под влиянием идей В. И. Вернадского, лекции которого они слушали в Сорбонне. В развернутом виде представление о ноосфере было дано в книге П. Тейяра де Шардена ''Феномен человека''. Последнее издание этой книги в русском переводе вышло в 1987 г. В ней автор определяет ноосферу как ''новый покров'', ''мыслящий пласт, который, зародившись в конце третичного периода разворачивается над миром растений и животных-вне биосферы и над ней''. Более глубокое понятие о ноосфере было развито В. И. Вернадским в последние годы жизни в статье ''Несколько слов о ноосфере'' (1944 г.). Он писал: ''Человечество, взятое в целом, становится мощной геологической силой. И перед ним, перед его мыслью и трудом, становится вопрос о перестройке биосферы в интересах свободно мыслящего человечества, как единого целого. Это новое состояние биосферы, к которому мы, не замечая этого, приближаемся, и есть ноосфера''. Согласно В. И. Вернадскому, ноосфера - это биосфера, разумно управляемая человеком. Ноосфера выходит за пределы земной биосферы в связи с развитием космонавтики. Происходит освоение космического - околосолнечного пространства с непредвиденными возможностями. Создается принципиальная возможность создания искусственных биосфер земного типа на некоторых планетах. Жизнь, зародившись в процессе космической эволюции, возвращается в космическое пространство.