Высшее профессиональное образование т. Я. Дубнищева концепции современного естествознания
Вид материала | Документы |
Содержание11.4. Молекулярно-генетический уровень организации живой материи. Строение и структура макромолекул белков |
- Учебно-методический комплекс концепции современного естествознания высшее профессиональное, 2306.3kb.
- Учебно-методический комплекс концепции современного естествознания высшее профессиональное, 2307.28kb.
- С. Г. Хорошавина концепции современного естествознания курс лекций, 6750.33kb.
- С. Г. Хорошавина концепции современного естествознания курс лекций, 5892.74kb.
- В. М. Найдыш Концепции современного естествознания, 8133.34kb.
- Учебно-методический комплекс дисциплины концепции современного естествознания Специальность, 187.08kb.
- Концепции Современного Естествознания, 274.86kb.
- Программа курса «Концепции современного естествознания», 168.05kb.
- Программа дисциплины Концепции современного естествознания Специальность/направление, 456.85kb.
- Бюллетень новых поступлений в нб согу за период с 05. 2011 по 10. 2011гг, 975.89kb.
Проявления жизни чрезвычайно разнообразны. Структурные уровни организации живой материи отражают критерий масштабности мира живой природы. Вслед за известным генетиком И.В.Тимофеевым-Ресовским выделим четыре уровня организации живой материи: молекулярно-генетический, онтогенетический, популяционно-видовой и биогеоценозный. При этом критериями должны быть элементарные структуры и явления, которые проявляются на данном уровне. Деление живой материи на уровни весьма условно, но отражает системный подход в изучении природы.
1. Молекулярный, или молекулярно-генетиче
ский, уровень — предмет молекулярной биологии и генетики.
Рождение этих наук отражает интеграционные процессы в есте
ствознании. В них изучаются механизмы передачи генной инфор
мации, проблемы генной инженерии и биотехнологий. Любая
живая система проявляется на уровне взаимодействия молекул.
Основные структуры — коды наследственной информации — представлены молекулами ДНК. Они разделены по длине на элементы кода — триплеты азотистых оснований (гены). Элементарные явления — процессы передачи информации внутриклеточным управляющим системам и связанные с генами мутации. Основные управляющие системы используют матричный принцип, т. е. служат матрицами, рядом с которыми строятся соответствующие макромолекулы. Матрицей при синтезе белков в клетках служит заложенный в структуре нуклеиновых кислот определенный код. Знание этого уровня обеспечивает понимание процессов и на других уровнях.
Было показано, что живое вещество обладает способностью к саморегуляции, поддерживающей жизнедеятельность и препятствующей неуправляемому распаду структур и веществ и рассеянию энергии, тогда как мертвое органическое вещество подвержено самопроизвольному распаду. В то же время организму присущи свойства, отличные от свойств составляющих его частей.
2. Онтогенетический уровень — следующий уровень
организации жизни, на котором изучается организм как целост-
426
ная сложная саморегулирующая система, способная самостоятельно существовать. Внутри него выделяют организменный и орган-но-тканевый подуровни, отражающие признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живой материи. Онтогенез — процесс реализации наследственной информации, закодированной в зародышевой клетке. Проверяется согласованность ее с работой управляющих систем особи в пространстве и времени жизни на Земле. Этот термин ввел Э.Геккель (1866) для рассмотрения структурной и функциональной организации отдельных организмов.
Особь, индивид — элементарная неделимая единица жизни на Земле. Элементарной структурой является клетка — структурная и функциональная единица, а также единица размножения и развития всех организмов. Клеточный, субклеточный подуровни отражают процессы специализации клеток и внутриклеточных внедрений. Процессы в самой клетке происходят в специализированных органоидах. Живая клетка — это сложная высокоупорядоченная система. Установлено, что в клетке непрерывно совершается синтез крупных молекул из мелких и простых (анаболические реакции, на которые тратится энергия) и их распад (катаболичес-кие реакции). Совокупность их в клетке есть процесс метаболизма. Особи, изучаемые на этом уровне, не существуют абсолютно изолированно в природе, они объединены на более высоком уровне организации — на уровне популяции.
3. Популяционн о-в и д о в о й — следующий уровень организации жизни на Земле — образуется, когда относящиеся к одному виду особи сходны по структуре, имеют одинаковый карио-тип (от греч. каrуоп — орех, ядро ореха; здесь — ядро клетки) и единое происхождение, способны к скрещиванию и дают плодовитое потомство. Популяция — совокупность особей одного вида, занимающих одну территорию и обменивающихся генетическим материалом. Популяция — часть вида, т.е. все составляющие ее особи принадлежат к одному виду. Она более однородна по составу, поскольку между ее особями происходит непрерывный обмен генами. Популяция — элементарная единица в современной теории эволюции. Элементарное явление — мутация. На популяцию могут оказывать давление и вызывать ее изменение мутационный процесс, популяционные волны, изоляция и естественный отбор. При нарушении изоляции между различными популяциями происходит скрещивание или обмен генами. Этот уровень важен при определении численности популяций и эволюции живого.
Вид — генетически замкнутая система. Поскольку между видами не может быть скрещивания, то возникшая мутация не выйдет за пределы вида. Организмы, обитающие на изолированных островах, образуют подвид, иногда подвид образуют группы популяций.
427
Число видов на Земле пытались подсчитать многие ученые. Генетик Т.Добржанский насчитал (1953) 1 млн видов животных, 265,5 тыс. видов растений (по современным оценкам, видов животных — от 1,5 до 2 млн, видов растений — около 500 тыс.). Среди животных 75 % приходится на долю членистоногих, но не все виды еще открыты, позвоночных — менее 4%, из них 1/2 составляют виды рыб, а млекопитающих — еще на порядок меньше. Из 3500 видов млекопитающих 2500 составляют грызуны. В растительном мире около 150 тыс. видов покрытосеменных (цветковых) растений, развившихся из голосеменных (семенных папоротников или близких к ним растений). Часть папоротников вымерла. К голосеменным относятся и хвойные растения, которые вместе с покрытосеменными — деревьями, кустарниками, травами — образуют растительный покров Земли. Водоросли (14 тыс.) идут после грибов (70 тыс.) и мхов (15 тыс.). Такое распределение численности видов на Земле сформировалось путем длительной эволюции. Из соотношения сухопутных (93 %) и водных (7 %) видов можно заключить, что возможность видообразования на суше была выше, чем в воде, и выход на сушу, носивший выборочный характер, открыл перспективы прогрессивной эволюции. Попутно отметим, что на суше преобладают растения, в воде — животные.
Обратимся к соотношениям их общих масс видов живой природы, или биомасс. Мировой океан занимает около 70,8 % земной поверхности, но его биомасса — всего 0,13% суммарной массы живых организмов. Масса живого вещества сосредоточена в основном в сухопутных растениях. Организмов, не способных к синтезу, менее 1 %, хотя по числу видов они составляют 1/5 всех организмов. На 79 % видов животных приходится 1 % всей биомассы Земли. Отсюда: чем выше уровень видовой дифференциации, тем меньше соответствующая ему биомасса, и наоборот.
4. Биогеоценозный уровень — следующий уровень структуры живой материи. Популяции разных видов, населяющие участок земной поверхности или водоем с определенными природно-климатическими условиями (среда обитания, или геоценоз), и связанное с ними сообщество растений, животных и микроорганизмов образуют неразделимый взаимообусловленный (с динамичными обратными связями) комплекс — биоценоз. Это понятие ввел В.Н.Сукачев (1940). Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов. Биогеоценоз автономен и саморегулируем, поэтому является элементарной единицей этого уровня и служит средой для входящих в него популяций.
Биомы — крупнейшие наземные сообщества, тесно связанные с определенными природными зонами и поясами. Растения и животные существуют в тесной зависимости от окружающей неживой природы и от других организмов, испытывают на себе их
428
воздействие и приспосабливаются к ним. В процессе исторического развития и естественного отбора на Земле под влиянием конкретных природных факторов сложились различные группы организмов — сообщества, взаимодействующие со своей средой обитания. Вместе с конкретными участками поверхности, занимаемыми биоценозами, и прилегающей атмосферой они называются экосистемой. По определению А.Тенсли, экосистема — взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществ и энергии. Изучением взаимоотношений совместно живущих организмов и их зависимости от внешней среды занимается отрасль биологии — экология. Этот термин предложил в 1866 г. немецкий биолог-эволюционист Э. Геккель, сторонник и пропагандист учения Дарвина.
Совокупность биогеоценозов составляет земную биосферу, они связаны круговоротом вещества и энергии. В этом круговороте жизнь выступает ведущим фактором. И биогеоценоз — открытая система, имеющая энергетические «входы» и «выходы», которые связывают соседние биогеоценозы.
Биосфера — самый высокий подуровень организации жизни на Земле (термин введен в 1875 г. Э.Зюссом). Эта область активной жизни охватывает нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. Вернадский создал учение о биосфере как об активной оболочке Земли, в которой совокупная деятельность живых организмов, включая человека, является геохимическим фактором планетарного масштаба и значения. Он выделял в биосфере живое, косное (солнечная энергия, почва и т.д.) и биокосное (органическое) вещества. На уровне биосферы решается такая глобальная проблема, как изменение концентрации углекислого газа в атмосфере. Установлено, что она растет на 0,4 % в год, что создает опасность «парникового эффекта». Рациональное использование природы не мыслимо без знания структуры и функционирования биогеоценозов.
11.4. Молекулярно-генетический уровень организации живой материи. Строение и структура макромолекул белков
Молекулярный уровень в организации живой материи — самый глубинный. В XX в. экспериментальная биология вышла на этот уровень. На нем начинаются и осуществляются важнейшие процессы жизнедеятельности: дыхание, обмен веществ и энергии, кодирование и передача наследственной информации и др. На молекулярном уровне теперь исследуются и проблемы происхождения жизни, и эволюция, и механизмы преобразования энергии. На этом уровне происходят химические реакции, обеспечивающие энергией клеточный уровень.
429
Знание закономерностей молекулярно-генетического уровня живой материи — необходимая предпосылка понимания всех жизненных процессов. Молекулярный уровень представлен молекулами белков, углеводов, липидов, нуклеиновых кислот и стероидов. Хотя в состав живого входят 24 химических элемента, основными являются кислород (65%), углерод (18%), водород (10%) и азот (3 %). Из этих четырех элементов в основном образуются молекулы, формирующие сложные органические соединения с разным строением и функциями. На долю остальных элементов приходится 3—4 %, но они также важны для жизни. Так, хотя йода в организме всего 0,01 %, при его недостатке нарушается деятельность щитовидной железы, развиваются болезни, ограничивающие рост и развитие организма. Кроме того, в состав живого входят простые неорганические соединения — вода (в теле человека занимает 60%), соли, образованные катионами калия, натрия, магния и других металлов, а также анионами угольной, соляной, фосфорной и серной кислот.
При диссоциации их в воде появляются соответствующие катионы и анионы, обеспечивающие многие важные процессы. Биомолекулы синтезируются из таких простых молекул, как вода, окись углерода и атмосферный азот. Уникальные свойства молекул углерода и воды представлены в гл. 7 —8. В процентном отношении к сырой массе вода занимает 75 — 85 %, белки — 10 — 20 %, липиды — 1 — 5 %, углеводы — 0,2 —2 %, нуклеиновые кислоты — 1 — 2%. Такой состав живого не случаен — жизнь зародилась в океанах, и потому живые организмы построены из элементов, образующих растворимые в воде соединения.
В процессе метаболизма эти молекулы через промежуточные соединения превращаются в строительные блоки — большие макромолекулы. Большинство таких соединений в живых клетках представлены нуклеиновыми кислотами и белками, их макромолекулы — полимерами (соединения мономеров в строго определенном порядке). Мономеры имеют в одном соединении одинаковые группировки, которые соединены химическими связями.
Нуклеотиды, сахара и аминокислоты — одни из самых маленьких биомолекул. Белки существенно больше и разнообразнее. С помощью специальных приборов и методов их умеют различать, отделять друг от друга, концентрировать и изучать по отдельности. Диаметр молекулы гемоглобина человека, например, составляет 6,5 нм. Все макромолекулы универсальны, так как построены по одному плану, и уникальны, так как неповторима их структура. Например, в состав белков входят аминокислоты, расположенные в определенном порядке, что делает их уникальными и обеспечивает их специфические биологические свойства. Белки — структурные элементы живых клеток, регулирующие процессы метаболизма и играющие роль катализаторов во многих
430
важных процессах жизнедеятельности. Углеводы и липиды являются источниками энергии, а стероидные гормоны регулируют некоторые процессы обмена веществ.
Белки — основа жизни животных и растительных клеток. Они выполняют различные функции. В обмене веществ участвуют белки, называемые ферментами, которые могут ускорять реакции в сотни тысяч раз; известно более 1000 ферментов, и каждый из них действует сугубо избирательно — только на определенную реакцию, не затрагивая иные. Белки выполняют строительную функцию, когда входят в состав мембран и органоидов клетки. Белки, попадающие с пищей в организм, расщепляются в процессе пищеварения до аминокислот, в том числе и незаменимых, а потом при попадании в клетки вновь строятся в структуры. Движение организма обеспечивают в мышечных волокнах белки миозин и актин, транспортную — гемоглобин (доставляет кислород). Многие гормоны — тоже белки (гормон поджелудочной железы — инсулин — активизирует захват молекул глюкозы и по необходимости либо запасает их внутри клетки, либо расщепляет их). Гормоны управляют деятельностью ферментов. Есть и резервные белки, предназначенные для питания плода или для выработки защитных белков — антител. Они распознают чужеродный белок возбудителя заболеваний, связываются с ним и подавляют его активность. Белки выполняют защитную функцию, обеспечивая свертывание крови, входят в состав иммунной системы. Они служат и источниками энергии: при распаде 1 г белка выделяется 17,6 кДж. При недостатке жиров или углеводов аминокислоты могут окислиться с выделением энергии. Огромное разнообразие живого определяется различиями в составе белков.
Белки — это сложнейшие органические соединения, состоящие из мономеров — аминокислот. В клетках и тканях — свыше 170 аминокислот, но в состав белков входят только 20 из них. Из элементов помимо углерода, кислорода, водорода и азота в некоторых белках содержится еще и сера. Белки — большие молекулы, нерегулярные полимеры, в которых аминокислоты «нанизаны, как бусинки, на нить» (их может быть до 1000). Все макромолекулы — цепи более мелких единиц, причем описать последовательность аминокислот, каждая из которых имеет свое название и обозначается одной из 20 букв алфавита, это значит и описать белок. Разные белки образуются при соединении аминокислот в разной последовательности, составить которую из 1000 по 20 можно огромным числом способов. И каждое такое распределение — определенный белок. Растения могут синтезировать все аминокислоты из более простых веществ, а животные — только часть. Оставшиеся аминокислоты, называемые «незаменимыми», организм животного должен получать с пищей.
431
У каждой аминокислоты есть карбоксильная группа (—СООН) и аминогруппа (—NH2), присоединенные к одному атому углерода. К нему присоединена и одна из многих возможных белковых групп, которыми и отличаются все 20 аминокислот. Обычно это бесцветные кристаллические вещества, растворимые в воде, но не растворимые в органических растворителях. В нейтральных водных растворах они ведут себя как амфотерные соединения (проявляют свойства и кислот, и оснований) и существуют в виде биполярных ионов. Потому аминокислоты препятствуют в растворах изменению кислотности: при увеличении рН они — доноры положительных ионов водорода, при понижении — акцепторы. Каждая аминокислота характеризуется своим значением рН, при которой она электрически нейтральна (в E-поле не перемещается ни к аноду, ни к катоду). Мономеры принято обозначать какой-либо буквой латинского алфавита, поэтому полимер представляется длинным сочетанием букв.
Биополимерами являются не только белки, но и полисахариды, и нуклеиновые кислоты. Строение молекул (число и разнообразие различных звеньев, их порядок расположения) во многом определяет их свойства. При этом часто бывает, что какая-то группа мономеров периодически повторяется, такой полимер называют регулярным. Но есть и нерегулярные полимеры.
Полипептид — длинная цепь, содержащая от 100 до 300 аминокислот, связанных пептидной связью. Молекулы гемоглобина, например, состоят из четырех полипептидных цепей, включающих по 145 аминокислот каждая. Для правильного функционирования такие цепи должны быть скручены и определенным образом ориентированы в пространстве. Полимерную цепь в растворе заставляет самопроизвольно скручиваться второе начало термодинамики. Белки функционируют в водном растворе, их скрученность противодействовала бы их точности и специфичности действия, поэтому они все время флуктуируют, и в них происходят повороты вокруг разных связей. Но эта внутренняя свобода является ограниченной и структура белков строго упорядочена.
Возможные структуры белковых цепей изучили с помощью рентгеноструктурного анализа. Полинг и Корн установили, что имеется несколько устойчивых конфигураций, и прежде всего форма а-спирали. В водном растворе группы NH- и СО-пептидных связей соединяются между собой, причем первое звено цепи соединено водородной связью с пятым, а второе — с шестым и т.д., поэтому и а-спираль устойчива в водном растворе. Между положительно и отрицательно заряженными боковыми группами аминокислот устанавливается ионная связь, между атомами, несущими частично положительные и частично отрицательные заряды, — водородная связь, между атомами серы и двумя молекулами аминокислоты цистеина — ковалентная связь. Неполярные боко-
432
вые цепи стремятся объединиться друг с другом и не раствориться в воде, образуя гидрофобное объединение. Таким образом, при расправлении этой определенной цепи она вновь скрутится единственным, присущим только ей образом. Если заменить хотя бы один атом или одну аминокислоту в полипептиде, получится молекула с другой структурой и другими свойствами.
Образование структуры — это уменьшение энтропии, тогда как вне белковой структуры энтропия должна скомпенсировать это локальное уменьшение и возрасти. При образовании водородной связи выделяемая энергия рассеивается. Водородная связь возникает между пептидными связями цепи: —N—Н---О—С, и она определяет вторичную структуру белка. Так, в молекуле гемоглобина четыре цепи, каждая из которых обвивается вокруг атома железа. Точное повторение ее формы в миллиардах молекул указывает упорядоченность. Кроме а-спирали, были установлены и другие устойчивые конфигурации (например, р-форма белка), их относят ко вторичной структуре белка. Не вся спираль закручивается, некоторые ее части не влезают, например пролин, и тогда структура прерывается неупорядоченными участками.
433
При выполнении определенных функций спираль изгибается, сворачивается и образует глобулу (третичную структуру) (рис. 11.1). При этом основную роль играет кулоновское взаимодействие между электрическими зарядами частей цепи, а также установление водородной связи между пептидными группами разных частей спирали. Спираль изгибается, часть энергии выделяется в окружающее пространство, и маловероятно, чтобы эта энергия вновь вернулась. Пример тому — денатурация белка при варке яйца, когда разрушаются все возникшие структуры. При образовании глобулы важную роль играет гидрофобное взаимодействие частей цепей. Аминокислотные остатки содержат массивные углеводородные части, которые ведут себя подобно капелькам масла в воде. Образуются окружающие молекулы «ловушки», создается структура, и энтропия локально уменьшается. Естественное направление процессов оказывается таким, что маслоподобные части молекул оказываются скрытыми от воды в глубинах структур белка, а водоподобные обращаются к воде, растворителю. Так возникает подстройка специфической формы молекулы.
Изучают глобулы методами рентгеноструктурного анализа. Эти работы начал Дж. Бернал, разработавший классификацию структур белков. Если четыре белковые нити — глобулы (каждая с характерной третичной структурой) объединяются вместе, энтропия мира несколько возрастает из-за выделившейся энергии и из-за того, что гидрофобные части укрывают друг друга в глубине молекулы. Они слипаются, как капельки масла, и молекулам воды не приходится расставлять много «ловушек». За счет этого возникает и четвертичная структура. Так стремление мира к беспорядку, хаосу прижимает белковые нити друг к другу.
Итак, последние три типа структур обусловлены ростом энтропии во Вселенной и локальным уменьшением энтропии. Может быть, этим же обусловлен и первичный порядок расположения аминокислот, но при создании первичной структуры важно и образование цепи при копировании ее в результате сложных химических реакций. Они регулируются специальными белками, ферментами, а весь процесс в целом называется биосинтезом белка.
Простейшая животная клетка содержит всего 5000 различных видов белков. Одни похожи на волокна и служат материалом для клеточных стенок, перегородок и мембран; другие настолько гибки, что скручиваются в клубки, очень активны и способны перемещаться, из них состоит почти все студнеобразное пространство клеток. Это — активные глобулярные белки, которые могут участвовать в химических реакциях, обеспечивающих рост.
Оптическая активность живого была открыта Л. Пастером. Все аминокислоты, входящие в белки, оказались вращающими влево плоскость поляризации, тогда как молекулы неорганических веществ построены симметрично, а в нуклеиновых
434
кислотах — только правовращающие сахара. Пастер связал это с молекулярной хиральностью (от греч. cheir — рука), или асимметрией правого и левого: поскольку живое возникло из неживого, то симметричное должно потерять симметрию, что могло случиться под влиянием каких-либо космических факторов. Но эта гипотеза пока не подтверждена. Выходит, предбиологическая среда потеряла первичную симметрию. Опыты последних лет показали, что только в хирально чистых растворах могут возникнуть биологически значимое удлинение цепочки полинуклеотидов и процесс саморепликации. Живые системы организованы так, что mРНК из правых Сахаров присоединяют к себе только левые аминокислоты. Все живые системы поддерживают хиральную чистоту.