Высшее профессиональное образование т. Я. Дубнищева концепции современного естествознания
Вид материала | Документы |
СодержаниеСуточное вращение 10.3. Распространенность и круговороты химических элементов на Земле Самопроизвольный распад неустойчивых атомов |
- Учебно-методический комплекс концепции современного естествознания высшее профессиональное, 2306.3kb.
- Учебно-методический комплекс концепции современного естествознания высшее профессиональное, 2307.28kb.
- С. Г. Хорошавина концепции современного естествознания курс лекций, 6750.33kb.
- С. Г. Хорошавина концепции современного естествознания курс лекций, 5892.74kb.
- В. М. Найдыш Концепции современного естествознания, 8133.34kb.
- Учебно-методический комплекс дисциплины концепции современного естествознания Специальность, 187.08kb.
- Концепции Современного Естествознания, 274.86kb.
- Программа курса «Концепции современного естествознания», 168.05kb.
- Программа дисциплины Концепции современного естествознания Специальность/направление, 456.85kb.
- Бюллетень новых поступлений в нб согу за период с 05. 2011 по 10. 2011гг, 975.89kb.
При изучении Луны ведущая роль отводилась автоматическим аппаратам, позволяющим передавать ценную информацию из труднодоступ-
377
.
ных районов наиболее экономически выгодно. Первая такая наша станция «Луна-1», преодолевшая земное притяжение в январе 1959 г., пролетев в непосредственной близости от ее поверхности (5 — 6 тыс. км), стала первой искусственной планетой Солнечной системы. Она зарегистрировала практическое отсутствие у Луны собственного магнитного поля и наличие солнечного ветра — потоков плазмы в межпланетном пространстве. В сентябре того же года «Луна-2» достигла лунной поверхности в восточной части Моря Дождей в районе кратеров Архимед и Автолик. Так впервые произошел непосредственный контакт с иным небесным телом. Уже через месяц «Луна-3» сфотографировала обратную сторону Луны, недоступную ранее, и оказалось, что на ней мало морей и больше кольцевых образований. Глобальный обзор ее поверхности завершила станция «Зонд-3» в июле 1965 г., после чего были составлены карта и глобус Луны. Станции «Луна-4» — «Луна-9» исследовали окололунное космическое пространство, а «Луна-9», совершившая мягкую посадку в районе Океана Бурь, не провалилась в грунт (ранее считали, что Луна покрыта толстым слоем пыли). Она передала на Землю панораму лунной поверхности. Последующие станции «Луна-10», «Луна-11», «Луна-12» исследовали радиационные поля, они работали как спутники Луны и передавали снимки различных участков поверхности с небольших расстояний. Станция «Луна-13», «прилунившаяся» в районе Океана Бурь в 1966 г., провела ряд экспериментов — были измерены плотность лунного грунта и его механические свойства. Лунный грунт темно-серого цвета, он легко слипался в комки, как влажный песок, но отличался от земных грунтов чрезвычайно низкой теплопроводностью. В нем были обнаружены прозрачные и мутноватые шарики, в зависимости от угла падения света он приобретал различные оттенки цвета.
Эти исследования позволили СССР приступить к проектированию станций нового типа, позволяющих вернуться с Луны на Землю (станции «Зонд-5», «Зонд-6»). Затем «Луна-15» отрабатывала трассу полета и посадку в заданный район, а «Луна-16» — доставку на Землю лунного грунта. И такие образцы грунта с нашего спутника из северо-восточной части Моря Изобилия автоматически (без непосредственного участия человека) были доставлены в земную лабораторию осенью 1970 г. В них содержалось около 70 химических элементов и изотопов, по которым установили возраст пород и их происхождение. Тогда же станция «Луна-17» доставила на Луну «Луноход-1», который перемещался по поверхности Луны в течение почти 10 месяцев, обследовав район Моря Дождей и передав на Землю более 200 панорам поверхности. Были проведены анализы лунного грунта и химического состава пород. Затем заработал и «Луноход-2», который изучал зоны материк—море. Станция «Луна-24» отобрала образцы грунта с глубин до 2 м и доставила их на Землю. Так было получено и доставлено в земную лабораторию 420 кг образцов грунта из 9 районов Луны, определен химический и минералогический состав, установлено внутреннее строение спутника нашей планеты. А в 1969 г. на Луну ступила нога человека — американского астронавта Нейла Армстронга, вышедшего из посадочного модуля космического корабля «Аполлон-11».
Исследование образцов лунного грунта показало, что в период формирования Луна была разогрета до температуры 1000 К. Види-
378
мо, это связано с падением на нее огромного числа метеоритов, что отразилось на ее поверхности. На несколько метров вглубь образовался особый слой — лунный реголит, который составлен из спекшихся пород (большей частью базальтовых). Реголит — хороший теплоизолятор, не позволяющий проникнуть резким колебаниям температур глубже нескольких десятков сантиметров (из-за отсутствия атмосферы колебания температуры на поверхности составляют от +130 до -170 °С). Анализ структуры кристаллических пород позволяет сделать вывод, что они когда-то были полностью расплавлены, а потом быстро охладились. Присутствие базальтов свидетельствует об активной вулканической деятельности, которая почти прекратилась около 3 • 109 лет назад. Возраст пород находится в пределах (3,23—4,65) 109 лет, т. е. Луна образовалась почти одновременно с Землей. В некотором смысле Галилей оказался провидцем, когда назвал обширные темные территории на Луне морями: когда-то лава вытекала через отверстия в коре, затапливая эти участки. Истечение лавы длилось почти 109 лет, о чем известно из исследования лунных пород. Странно, что ее материал содержит повышенное количество тугоплавких лито-фильных элементов и очень малое число летучих. Недавно установлена возможность существования льда в глубинных частях кратеров, хотя у Луны нет ни воды, ни атмосферы. В отдельных местах лунной поверхности зафиксировано небольшое истечение вулканических газов.
Происхождение Луны — предмет ряда гипотез. Одна из них основана на теориях Джинса и Ляпунова — Земля вращалась очень быстро и сбросила часть своего вещества, другая — на захвате Землей пролетавшего небесного тела. Наиболее правдоподобна гипотеза столкновения Земли с планетой, масса которой соответствует массе Марса, происшедшего под большим, «скользящим» углом, в результате которого образовалось огромное кольцо из обломков (железное ядро Земли при этом не пострадало), что и составило основу для Луны (железа на Луне очень мало). Похоже, что она образовалась вблизи Солнца за счет самых ранних доме-таллических конденсатов при высоких температурах. Странными оказались аномалии магнитного поля, которые сильно менялись от точки к точке. При изучении его со спутников было получено значение, которое меньше земного в 1000 раз.
Земля — наиболее крупный и наиболее сложный динамический объект из всех внутренних планет. На Земле еще продолжают идти процессы формирования геосфер, особенно коры, происходит движение литосферных плит, меняется положение континентов. Расстояние Земли от Солнца оказалось оптимальным для развития биосферы в отличие от других планет. Изменение этого расстояния на 20 % от существующего сделало бы невозможным стабильное существование биосферы (или само появление жизни), а
379
при массе, меньшей на 25 %, наша планета не смогла бы удержать столь обширную атмосферу.
Процесс формирования планеты Земля, как и любой из планет, имел свои особенности. Земля зародилась около 5 • 109 лет назад на расстоянии 1 а. е. от Солнца. Как показали исследования Луны, примерно 4,6—3,9 млрд лет назад происходила ее интенсивная бомбардировка межпланетными обломками и метеоритами. Вероятно, они бомбардировали и Землю, а при падении на Землю их вещество нагревалось и дробилось. Это указывает на существование особой неустойчивости в то время в Солнечной системе. Современные представления о значении резонансов в системе (см. 3.10) делают правдоподобным предположение о том, что именно в то время продолжался процесс синхронизации движения планет, уточнявший систему резонансов и современную согласованность динамики всей системы. В этот же период система наиболее чувствительна к внешним (галактическим) воздействиям (особенно в системе Земля — Луна — Солнце могли возрастать приливные силы). Первичное вещество сжималось под действием тяготения, принимало форму шара, недра которого разогревались. Происходили процессы перемешивания, шли химические реакции, более легкие силикатные породы выдавливались из глубины на поверхность и образовывали земную кору, тяжелые — оставались внутри. Разогрев сопровождался бурной вулканической деятельностью, пары и газы вырывались наружу. У планет земной группы сначала не было атмосфер, как на Меркурии и Луне. Иной была и светимость Солнца, а отсутствие атмосферы и гидросферы (а, значит, и облаков, закрывающих сейчас до 0,5 поверхности) сказывалось на отражательных характеристиках. Активизация процессов на Солнце вызывала увеличение вулканической деятельности, рождались из магмы гидросфера и атмосфера, появились облака, водяные пары конденсировались в океанах.
Образование океанов не прекращается на Земле до сих пор, хотя это уже не интенсивный процесс. Обновляется земная кора (и не только силами естественного происхождения!), вулканы выбрасывают в атмосферу огромные количества углекислоты и водяных паров. Первичная атмосфера Земли состояла в основном из СO2. Резкое изменение состава атмосферы произошло примерно 2 млрд лет назад, его связывают с созданием гидросферы и зарождением жизни. Растения каменноугольного периода поглотили большую часть СO2 и насытили атмосферу O2. Последние 200 млн лет состав земной атмосферы практически остается неизменным. Доказательством этого служат залежи каменного угля и мощные пласты отложений карбонатов в осадочных породах. Они содержат большое количество углерода, ранее входившего в состав атмосферы в виде СO2 и СО. В образцах, образовавшихся 3,5
380
млрд лет назад, содержится примерно 60 % С02, а оставшиеся 40% — это соединения серы, аммиак, хлористый и сернистый водород. Совсем ничтожно содержание азота и инертных газов. Свободного кислорода тогда не было — обнаружены легкоокисляе-мые вещества в не окисленном состоянии. Под действием солнечного света из водяного пара освобождалось небольшое количество кислорода, но он окислял в атмосфере аммиак, сероводород, метан. Выделялся азот, постепенно накапливающийся в атмосфере; около 600 млн лет назад доля кислорода достигла 1 %, тогда появились и примитивные одноклеточные организмы. За 200 млн лет содержание кислорода быстро увеличивалось, этому способствовали зеленые растения. По словам Вернадского, «наша планета два миллиарда лет раньше или позже — это химически разные тела».
Земля участвует в двух движениях: вращается вокруг своей оси и обращается вокруг Солнца по эллиптической орбите. Большая полуось орбиты, равная 149,6 • 106 км, принята за астрономическую единицу расстояния (1 а. е.). Расстояние в перигелии (3 января) больше этого расстояния на 2,5 • 106 км, а в афелии (3 июля) — меньше на 2,5 • 106 км. Вращение Земли вокруг своей оси приводит к смене дня и ночи. Осью названа воображаемая линия, проходящая через центр Земли и одну неподвижную на небосводе звезду, называемую Полярной. Ось Земли перпендикулярна экваториальной плоскости. Экватор делит Землю на Северное и Южное полушария. Точки пересечения оси Земли с поверхностью называются полюсами. Плоскость земного экватора наклонена к плоскости орбиты Земли вокруг Солнца на 23,5° и перемещается параллельно самой себе, поэтому в одних участках орбиты земной шар наклонен к Солнцу Северным полушарием, а в других — Южным (см. рис. 2.2). Из-за этого наклона происходит смена времен года и существуют климатические пояса.
В дни равноденствий (21 марта и 23 сентября) оба полюса Земли освещены одинаково, Солнце там видно лишь на горизонте. После 21 марта — дня весеннего равноденствия, принятого за начало астрономического года, область около Северного полюса более обращена к Солнцу, день увеличивается и устанавливается полярный день — Солнце не заходит за горизонт. В Северном полушарии — весна. В это время у Южного полюса — полярная ночь, в полушарии — осень. Границы полярных дня и ночи определены полярными кругами на 66,5° соответственно северной и южной широты. В это время Солнце в полдень достигает своего самого высокого в Северном полушарии (низкого — в Южном) положения над горизонтом, и начинается лето (самый длинный день в Северном полушарии) и зима (самый короткий день — в Южном) — 21 июня. В этот день летнего солнцестояния Солнце находится в зените на так называемом тропике Рака (23,5° северной широты). Далее все происходит в обратном порядке. Когда после дня осеннего равноденствия в Северном полушарии наступит осень, день станет меньше ночи, будет убывать до самого короткого дня — 22 декабря (зимнее солнцестояние), в Южном полушарии после весны наступит лето, а в этот день — самый длинный — оно будет в зените на тропике Козерога (23,5° южной широ-
381
ты). Пояс между тропиками Рака и Козерога называют тропическим (жарким). В этом поясе Солнце дважды в год проходит через зенит, а на самих тропиках — только раз в году. Умеренные пояса лежат между полярными кругами и тропиками. Там не бывает полярных дней и ночей, но и Солнце никогда не бывает в зените.
Суточное вращение Земли происходит почти с постоянной угловой скоростью, определяемой периодом 23 ч 56 мин 4,1 с, что равно одним звездным суткам. Ради удобства жизни поверхность разделили на 24 часовых пояса по меридианам (15° по долготе). Среднее солнечное время в часовом поясе названо поясным, в каждом соседнем часовом поясе оно отличается на 1 ч. За начало выбран меридиан Гринвичской обсерватории около Лондона, отсчет ведется с запада на восток. Линия перемены дат — 12-й часовой пояс (см. гл. 2). Удлинение суток вызывает возникающая из-за приливных сил сила трения, замедляющая вращение Земли вокруг оси. На это впервые указал Кант (1754) и даже попытался оценить. Удлинение суток составляет 0,002 с за 100 лет, его можно обнаружить по рубцам на теле некоторых кораллов. Прирост меняется в течение года, каждому году соответствует своя полоска, как кольцам на срезе дерева. Изучая кораллы, возраст которых 4 • 108 лет, геологи обнаружили, что тогда год состоял из 400 суток, каждые сутки — из 22 ч. По окаменелостям более древних форм было установлено, что 2 • 109 лет назад сутки составляли всего 10 ч.
Форма Земли близка к шарообразной, но при детальном исследовании оказывается более сложной, даже если ее обрисовать поверхностью океана и мысленно продолжать эту поверхность под континентами. Неровности поверхности поддерживаются неравномерным распределением массы внутри земного тела. Эту форму назвали геоидом.
Геоид — это почти эллипсоид вращения; его полярный радиус меньше экваториального на 21,4 км из-за влияния центробежной силы, возникающей в результате вращения Земли вокруг своей оси. Земля на 70 % покрыта водой, 98 % водной оболочки — это Мировой океан, и только 30 % ее поверхности составляет суша. В настоящее время форма Земли уточняется с использованием спутников. Величина сжатия 1/298,2. Известно, что рельеф поверхности очень неровный: наибольшую высоту поверхности имеет гора Эверест в Гималаях, а наибольшая глубина под уровнем океана — 11,022 км (Марианский желоб в Тихом океане). Перепад — 20 км. В середине XIX в. по результатам градусных измерений был получен ряд значений размеров земного эллипсоида. В 1873 г. немецкий ученый И.Листинг ввел понятие о геоиде и наметил пути его изучения, а в 1888 г. русский ученый Ф. А. Слудский внес эти уточнения в теорию фигуры Земли. Ныне геодезия получила прочную теоретическую базу. Развивается и наука о рельефе земной поверхности — геоморфология.
Геосферы — концентрические оболочки Земли, по которым рассматривать строение нашей планеты предложил австрийский гео-
382
лог Э. Зюсс, давший в своем трехтомном труде «Лик Земли» историю земной коры на основе своей гипотезы, объяснявшей тектонические процессы и образование складчатости охлаждением и сжатием планеты. Некоторый собранный им материал еще не потерял ценности.
Земля окружена обширной атмосферой, давление у поверхности равно 0,1 МПа.
Земная атмосфера очень изменилась за свою историю. Верхняя ее граница лежит на высоте более 2000 км. Граница эта нечеткая, так как газы постепенно рассеиваются в космическое пространство. Поскольку с высотой атмосфера становится все более разреженной, основная ее масса сосредоточена в довольно узком слое: 50 % массы находится между уровнем моря и высотой 5 — 6 км, 90 % — на высоте до 16 км, 99 % — на высоте до 30 км. Так что с высотой над поверхностью Земли не только уменьшаются плотность, давление и температура воздуха, но меняются электрическое состояние и состав. Поэтому в ней выделяют несколько сфер. Тропосфера — нижний слой атмосферы, простирается в высоту на 8—12 км, а в тропиках — на 16—18 км. Она содержит почти весь водяной пар, поэтому в ней возникают облака, выпадают осадки, наблюдаются грозы. Примерно через каждый километр происходит понижение температуры на 1 °С. Это связано с прозрачностью воздуха для солнечных лучей, поэтому нагрев идет только от земной поверхности. Верхняя граница следующей области — стратосферы — располагается на высоте 50 — 55 км. В ней температура растет с высотой, хотя ее значение остается ниже нуля по Цельсию; в ней находится озоновый слой и почти нет водяного пара. Эти области разделены тонким слоем в несколько сот метров — тропопаузой. Мезосфера расположена выше и достигает высоты 80 км. Температура в ней с высотой вновь падает до -80 °С; образуются тонкие серебристые облака. Ионосфера (термосфера) расположена выше и достигает высоты 800 км. Где-то на высоте около 100 км температура поднимается до 0 °С, на высоте 150 — 200 км достигает 500 °С и растет далее. Данные, полученные со спутников, показали, что температура может колебаться в пределах 100 °С. Здесь газы находятся в ионизованном состоянии из-за действия ультрафиолетового и корпускулярного излучения Солнца. Ионизованный газ становится электропроводным, поэтому корпускулярное излучение Солнца под влиянием магнитного поля Земли отклоняется в сторону высоких широт, где наблюдается свечение — полярные сияния. Ионосфера влияет на распространение радиоволн, испытывающих отражение от ионизованных слоев. Самая верхняя часть атмосферы — экзосфера — сильно разреженная, но достаточно горячая.
Твердую оболочку Земли называют литосферой. Верхняя часть литосферы — это земная кора, достигающая толщины 35—65 км
383
на континентах и 6 — 8 км — под дном океанов. Под корой расположена мантия, границей между этими слоями служит так называемый слой Мохоровичича. В этом слое скачкообразно возрастает скорость распространения сейсмических волн. На глубине 120 — 150 км под континентом и 60 — 400 км под океаном залегает слой мантии — астеносфера. Это — область с очень низкой вязкостью. Земная кора растрескалась на части, и литосферные плиты, плавая в астеносфере, медленно перемещаются относительно друг друга. Ниже астеносферы, примерно с глубины 410 км, давление на минералы становится очень велико, плотность сильно увеличивается. Сейсморазведка показывает, что на глубине 2920 км плотность становится 10080 кг/м3, тогда как до нее была 5560 кг/м3. Начинается область внешнего земного ядра, внутри которого находится внутреннее ядро радиусом 1250 км. Внешнее ядро — жидкое, так как через него не проходят поперечные волны. Кстати, с наличием жидкого ядра связывают существование магнитного поля Земли. Принято считать, что внутреннее ядро твердое. Возможно, что температура в центре достигает 105 К, а у нижней границы мантии — не выше 5000 К.
Академик Ф.У. Эпинус, известный своими работами по теории электричества и магнетизма, исследовал возможность столкновения кометы с Землей, а также распределение тепловых потоков по земному шару (1761). Он впервые связал тепловые факторы с распределением суши и океанов, утверждая, что океаны в течение лета накапливают теплоту, возвращая ее атмосфере зимой, в отличие от суши, которая быстро нагревается и остывает. На основе своих исследований он предположил, что должен существовать шестой, южный материк. Антарктида была, действительно, открыта через 60 лет экспедицией М. П.Лазарева и Ф. Ф. Беллинсгаузена. Эпинус, выделяя роль вулканов в процессе образования гор, заинтересовался причинами образования на Луне кольцевых гор. Таких гор на Земле не было, и это приводило ученых в замешательство. Эпинус сравнил их с вулканами и сделал вывод об активной вулканической деятельности на Луне в прошлом (1781). Кольцевая форма гор сохранилась из-за отсутствия атмосферы. Так Эпинус первым заявил о том, что на Земле и Луне происходят одинаковые геологические процессы.
Как видно из приведенных фактов, наряду с геологией — наукой о строении, составе и эволюции земной коры — сформировалась геофизика, наука о физических свойствах Земли и о происходящих в ней процессах. Кроме того, в ней исследуют и воздушную, и водную оболочки. Выделилось еще ряд дисциплин. Бурно развивалась стратиграфия — наука о пространственном взаимоотношении и возрасте горных пород и соответственно геологических эпохах. Науки о веществе земной коры — кристаллография и минералогия — становились все более точными.
Под влиянием эволюционного учения Дарвина на смену идеям, объяснявшим изменения в облике планеты и населявших ее
384
животных и растений всякого рода катастрофами, стали выдвигаться гипотезы, рассматривающие геологические явления в их развитии и взаимосвязи. К 1880 г. В.О.Ковалевский заложил основы эволюционной палеонтологии. Изучая ископаемых животных, он установил связь эволюции организмов с изменениями среды. В этом же направлении работали С. Н. Никитин, А. П. Карпинский, А. П. Павлов. Идей дарвинизма в геологии придерживались английский ученый Т.Хаксли, австриец Э.Зюсс и бельгийский палеонтолог Л.Долло. Эволюционная палеонтология оказала большое влияние на развитие естествознания.
10.3. Распространенность и круговороты химических элементов на Земле
Наблюдения небесных тел ведутся уже несколько тысяч лет. Но только сочетание телескопов с методами спектрального анализа, фотографии и методов регистрации излучений в разных областях спектра позволили получить сведения о строении и химическом составе космических тел. История химических элементов, в течение которой сложились определенные пропорции количественных соотношений атомов, определила развитие планет Солнечной системы и нашей Земли. По своему составу (по плотности почти вдвое) внутренние планеты сильно отличаются от внешних. Основными источниками сведений о распространенности химических элементов служат данные о составе Солнца, полученные с помощью спектрального анализа, и результаты лабораторных химических анализов материала земной коры, метеоритов, пород поверхности Луны и планет. Свойства химических элементов, как известно, упорядочены в Периодическую таблицу элементов, и место элемента в таблице Менделеева определяется зарядом его ядра. Известные элементы характеризуются набором изотопов — атомов и тем же зарядом ядра, но с разными массами. Масса изотопа определяется суммой числа протонов и нейтронов в ядре и называется массовым числом. Вещество Земли и планет состоит из 300 изотопов, из которых 273 стабильны. Еще В.И.Вернадский подчеркивал, что в космических телах «распределение атомов зависит от строения их атомов».
Распространенность элементов с ростом порядкового номера убывает неравномерно, причем элементы с четным порядковым номером более распространены, чем с нечетным (в геологии этому соответствует правило Гаркинса—Оддо), особенно элементы с массовым числом, кратным 4, например Не, С, О, Ne, Mg, Si, S, Ar, Ca. На долю таких изотопов в земной коре приходится 86,81 % массы земной коры. Содержание элементов с четными порядковыми номерами составляет 60 % от числа всех
385
Рис. 10.2. Относительная распространенность химических элементов в Солнечной системе в зависимости от порядкового номера
стабильных изотопов (рис. 10.2). Особенно резко эта закономерность проявляется в группе редкоземельных элементов. Эти элементы, имея одинаковое строение наружных электронных оболочек, обладают также близкими химическими свойствами. Ряд максимумов соответствует элементам с ядрами, у которых число протонов или нейтронов равно 2, 8, 20, 50, 82, 126. Этим «магическим» числам соответствуют заполненные ядерные оболочки, характеризующие устойчивые ядра.
Изотопы железа обладают относительно большой энергией связи на нуклон, и они энергетически устойчивы. Один из самых устойчивых изотопов железа — Fe-56 — наиболее распространен в космических телах. Академик А. Е. Ферсман отметил (1935), что в земной коре железо занимает четвертое место по массе и восьмое — по числу атомов, а в метеоритах — второе место по массе и четвертое — по числу атомов. Как отметили космохимики Г. Юри и Э. Зюсс, распространенность элементов и их изотопов определяется ядерными свойствами и что окружающее нас вещество похоже на золу космического ядерного пожара, в котором оно было создано.
Большинство газов (или летучей части солнечного вещества) составляют Н, Не, СН4, СО, О, N, NH3, CO2 и все инертные газы. Основная часть внутренних планет и метеоритов состоит из
386
нелетучих элементов солнечного вещества — Si, Fe, Vg, Ca, Al, Ni, Na. Сравнивая их, советский геохимик А. П. Виноградов показал (1962), что эти породообразующие элементы планет и метеоритов выброшены Солнцем, а не захвачены из других областей Галактики. Некоторые различия в составе планет связаны с вторичными процессами и с тем, что элементы входят в разные соединения, находясь в разных агрегатных состояниях. Особенно близок состав нелетучей части элементов Солнца и каменных метеоритов — хондритов. Летучая часть солнечного вещества, существующая в виде газов при Т > 0 °С, при низких температурах затвердевает, а атомы газов вступают в соединения. Инертные газы в соединения не вступают, оставаясь газами и при низких температурах. Земля и метеориты сохранили летучие элементы в той степени, в какой они проявляли свою активность, и инертные газы в них редки. Изотопный состав элементов С, О, Si, Cl, Fe, Ni, Co, Ba, К, Си одинаков на Земле и в метеоритах. Относительно Солнца таких широких исследований не проведено, но соотношение изотопов 12С/13С такое же, как и на Земле, и равно 0,011. Исследования инертных газов показали идентичность изотопного состава в Солнечной системе, тогда как на других звездах он другой. По свидетельству советского астронома Г.А.Шайна, для некоторых углеродных звезд он меняется от 1 до 50, а для межзвездного газа — 0,2. Эти различия важны для определения происхождения химических элементов, их синтеза в звездах и последующей эволюции.
Итак, все тела Солнечной системы построены из небольшого числа элементов (с 28-го номера распространенность резко падает) и имеют единое происхождение. Метеориты, большинство которых оказались очень древними, дали ценную научную информацию об истории возникновения отдельных тел Солнечной системы. По оценкам, основанным на законе радиоактивного распада урана, тория, рубидия и калия, их возраст около 4,5 — 4,6 млрд лет, т.е. совпадает с возрастом Земли и Луны. В них насчитываются примерно 66 минералов, большинство из них похожи на земные. Вероятно, метеориты образовались тогда же, когда и планеты земной группы.
По геохимическим свойствам все элементы разделены на четыре группы. Это разделение связано с определенной электронной структурой атомов, проявляющейся в смеси веществ при охлаждении и нагревании. Атмофильные элементы склонны накапливаться в атмосферах (это — все инертные газы, кислород, азот, водород); литофильные образуют твердые оболочки планет; халъкофильные создают соединения с серой, подобные ионам меди (от греч. «халькос» — медь); сидерофильные способны растворяться в сплавах железа (от греч. «сидерос» — железо).
Химический состав земной коры, общая масса которой составляет только 0,5 % массы всей Земли, исследовали крупнейшие геохимики: Ф.Кларк, В.И.Вернадский, А.Е.Ферсман,
387
А. П. Виноградов, супруги И. и В. Ноддак и др. Чтобы доказать наличие элемента рения в земной коре и определить его среднее содержание, супруги Ноддак провели 1600 анализов разнообразных минералов и пород. В литосфере наибольшее распространение сейчас получил кислород — 50 % массы всей литосферы; 26 % составляет кремний, 7 —8% — алюминий, 4% — железо; суммарное содержание магния, калия, кальция и натрия — порядка 10 %, а на долю оставшихся (более 80) элементов приходится несколько процентов.
Существенно, что кремний расположен в таблице Менделеева в том же столбце, что и важнейший элемент для живого вещества — углерод. Это подобие свойств отразилось и в истории биосферы. По одной из гипотез, первые формы живого вещества создавались на мокрых глинах. На основе окиси кремния образованы многие минералы, в том числе содержащие алюминий. По подсчетам Вернадского, земная кора (до глубин 16 км) состоит на 85 % из силикатов. Если в сложных алюминиево-кремниевых кислотах водород замещается металлами, то соли этих кислот — алюмосиликаты — становятся основой довольно сложных по составу минералов. Кристаллическую основу алюмосиликатов составляет замкнутая система атомов, содержащая алюмокислородные и крем-некислородные группы — комплексы. В зонах выветривания под действием внешних факторов (воды, солнечного излучения, газов) из них выносятся металлы и остается каолин (состав: кремний, алюминий, водород, вода или группа ОН). Эту конструкцию Вернадский назвал каолиновым ядром. Кольцевая структура ядра обеспечивает ему высокую устойчивость.
В составе атмосферы сейчас преобладают азот и кислород (98,6 % массы всей атмосферы), это соотношение практически неизменно до высот 150 км. Водорода почти в миллион раз меньше, чем кислорода. На высоте 160 км и выше состав атмосферы меняется и, как показали данные, полученные со спутников, водород становится преобладающим на высотах 1500 км.
В морской воде на долю кислорода, водорода, хлора и натрия приходится 99,5 %. Переход к гидросфере — это резкое изменение организации геосфер, вызванное переходом от плотных внутренних геосфер к значительно более подвижным внешним геосферам Земли.
Внутри Земли, по данным А.Е.Ферсмана, доля железа — 37 %, затем следуют кислород и кремний; более тяжелые элементы (около 0,5 % массы Земли) и элементы легче железа. Сравнение химического состава Земли и Солнца показывает, что относительное содержание элементов тяжелее натрия почти одинаково в атмосферах Земли и Солнца, содержание кислорода, углерода, азота, гелия в солнечной атмосфере в десятки раз больше, чем на Земле, а водорода — даже в 100000 раз (рис. 10.3).
388
Радиоактивность — важнейшее свойство Земли, определяющее ее происхождение и химическую эволюцию. Первичные планеты были сильно радиоактивны, и, подвергаясь радиоактивному нагреву, они испытывали химическую дифференциацию, в результате которой у планет земной группы сформировались внутренние металлические ядра. Остатки металлической и сульфидно-металлической фаз, сохранившиеся в первичных мантиях, постепенно стекали к центру и формировали четкие границы ядер. Ли-тофильные элементы переходили вверх, дегазация мантий при выплавлении легкоплавких фракций приводила к базальтовым расплавам, которые изливались на поверхности планет. Газовые компоненты, вырывавшиеся вместе с ними, дали начало первичным атмосферам, которые смогли удержать только крупные планеты. Наиболее массивная среди внутренних планет, Земля, прошла сложнейший путь химической эволюции. На последних стадиях остывания солнечной туманности возникли сложные органические соединения, обнаруженные в метеоритном веществе, которые были усвоены нашей планетой и привели к развитию жизни.
Самопроизвольный распад неустойчивых атомов отражает эволюцию вещества Земли и события эпохи рождения химических элементов, как устойчивых, так и неустойчивых. При распадах выделяется теплота Q. Для Земли сейчас важны радиоактивные изотопы урана, тория и калия, которые распадаются с выделением теплоты:
Тепловой баланс Земли определяется в основном теплотой, выделяемой при распаде этих изотопов. Для объяснения теплового режима земной коры достаточно имеющегося количества радиоактивных элементов в ее толще до глубин 0,9 м (по расчетам (1937) радиохимика академика В.Г.Хлопина). Алюмосили-катная кора Земли более радиоактивна, чем мантия. Считая равными в среднем радиоактивности планеты и метеоритов, можно оценить выделяемую Землей радиогенную теплоту от 9,66 1027 до 43,68 • 1027 Дж/год. Земля теряет теплоту в окружающее пространство путем излучения и теплопроводности. Геотермические
389
измерения показали, что величина тепловых потоков одинакова и на дне океанов, и на материках: за год около 7,98 • 1027 Дж, что меньше количества радиогенной теплоты. По словам Вернадского, «количество создаваемой радиоактивным процессом тепловой энергии не только достаточно для того, чтобы объяснить потерю Землею тепла и все динамические и морфологические воздействия внутренней энергии планеты на ее поверхность — земную кору, но и для того, чтобы поднять ее температуру». В конце 50-х гг. обнаружили, что верхние слои атмосферы излучают избыточную энергию в инфракрасном диапазоне. Это связано с взаимодействием атмосферных газов с коротковолновым излучением Солнца, существенно влияющими на погоду.
Сверхглубокая скважина, пробуренная на Кольском полуострове, позволила проникнуть в недра Земли на глубину 12 км и получить непосредственные данные о составе и условиях внутри Земли. Давление в земных недрах растет с глубиной, причем при глубине 3 км — резко растет, а при глубине 8 км — резко падает. Температура из-за приближения к мантии тоже растет, сначала на 1 °С каждые 100 м (до глубины 3 км), затем по 2,5 °С, а на глубине 10 км достигает 180 °С. Пробуренные толщи Земли показывают, что в этих областях идут активные процессы рудооб-разования, на глубине 4—11 км обнаружены крупные зоны раздробленных пород, образованных при относительно низких температурах и сцементированных сульфидами Fe, Ni, Co, Си. К настоящему времени определены горизонты, на которых преимущественно находятся те или иные важные для жизни полезные ископаемые. Так, благородные металлы чаще всего находятся на глубинах 300 — 800 м, цветные металлы — 600—1200 м, железные руды — 300 — 2000 м, каменный уголь — 700 — 1500 м, нефть и газ — 2500 — 6000 м. Процесс формирования полезных ископаемых тесно связан с историей планеты.
Из законов радиоактивного распада следует, что в прошлом радиоактивность была выше. Так, 4,5 млрд лет назад урана-238 на Земле было вдвое больше, чем сейчас, и энергии он выделял больше. Высокая радиоактивность ранней Земли повышала ее температуру, способствовала плавлению веществ и была ведущим фактором химической дифференциации. По данным геохимика Г. В.Войткевича, свыше 5 млрд лет назад этой теплоты было так много, что вся масса Земли могла находиться даже в газообразном состоянии. Кроме тория, урана и калия существовали радиоактивные изотопы с периодом полураспада менее 108 лет. Они возникли в эпоху ядерного синтеза тяжелых элементов и вошли в состав молодых тел Солнечной системы. Примером может служить йод-129 с периодом полураспада 17,2 млн лет, превращающийся в ксенон-129.
В докембрийском редкоземельном минерале бастиезите обнаружены (1971) долгоживущие радиоактивные элементы плутоний-244 и кюрий-247, имеющие своим конечным продуктом рас-
390
пад ксенон-131 —136. Значит, при «варке» тяжелых элементов бьии и сверхтяжелые трансурановые ядра, пока не полученные в лаборатории (так как с ростом номера элемента неустойчивость трансурановых ядер резко растет). Группа индийских ученых во главе с С. Бандари обнаружила в некоторых метеоритах и лунной пыли следы более 300 треков, которые могли быть вызваны такими трансурановыми элементами, присутствовавшими при затвердевании породы. Большинство «вымерших» радиоактивных изотопов при распаде вьщеляли много больше энергии. Так, если при распаде урана выделяется 2,98 Дж/год, то плутония-244 — 50,5 Дж, кюрия-247 — 160,3 Дж и йода-129 — 5,54 Дж/год.
Все земные геосферы связаны между собой кругооборотами вещества, глобальными потоками энергии и момента импульса. В результате образуется сложная система, состояние которой, во многом похожее на состояние динамического равновесия, создает условия для динамической эволюции планеты. Для всех геосфер характерны многочисленные и закономерные отклонения от однородного (симметричного) состояния, наличие градиентов температур, давлений, потенциалов и т.д., которые и направляют потоки вещества, энергии и информации. Хотя каждая из геосфер имеет свою специфику динамики, обменов, систем обратных связей, многие особенности регулируются взаимодействиями между этими огромными подсистемами. В. И. Вернадский описал минералы и их жизнь, природные геологические тела, в которые соединяются минералы, а также сферы Земли, составленные из этих сфер. Эти знания необходимы в поиске месторождений полезных ископаемых. Совместное рождение минералов, образующих природные тела, называют парагенезисом. Парагенезис минералов мало менялся на обозримых промежутках времени, но глобальные изменения условий на нем отразились. Например, оловянный камень (каситерит) накапливался в наибольших количествах в древнем архее и в третичный период. Вернадский, изучавший геологическую историю, насчитывающую многие миллионы лет и огромные пространственные области Земли, писал: «Все реакции земной коры, насколько их можно проследить до сих пор, представляют собой определенные циклы, определенные круговые системы химических изменений, которые постоянно вновь повторяются».