Пути проведения боли и ее механизмы
Вид материала | Реферат |
- Современные подходы к фармакотерапии послеоперационной боли с применением синтетических, 227.18kb.
- Современные подходы к фармакотерапии послеоперационной боли с применением синтетических, 227.9kb.
- Боль, природа боли, афферентные пути, 97.64kb.
- Перечень контрольных заданий для студентов 4-го курса по разделам: кардиология, пульмонология,, 1837.67kb.
- Механизмы возникновения боли, 1660.14kb.
- Дар трёх солнц, 419.51kb.
- Принципы интегративной диагностики и лечения боли, 43.75kb.
- Бурыкина Марина Юрьевна Сазонов Сергей Николаевич Зависимое поведение: причины, механизмы,, 2842.63kb.
- Образование: неполное среднее, 148.4kb.
- Заседание рабочей группы по подготовке и проведению круглого стола «Социальные проблемы, 25.59kb.
Боль можно классифицировать следующим образом:
- Ноцигенная
- Нейрогенная
- Психогенная
Данная классификация может быть полезной для первоначальной терапии, однако, в дальнейшем подобное разделение групп невозможно из-за их тесного сочетания.
Ноцигенная боль
Когда при раздражении кожных ноцицепторов, ноцицепторов глубоких тканей или внутренних органов тела, возникающие импульсы, следуя по классическим анатомическим путям, достигают высших отделов нервной системы и отображаются сознанием, формируется ощущение боли. Боль от внутренних органов возникает вследствие быстрого сокращения, спазма или растяжения гладких мышц, поскольку сами гладкие мышцы нечувствительны к жару, холоду или рассечению. Боль от внутренних органов, особенно имеющих симпатическую иннервацию, может ощущаться в определённых зонах на поверхности тела. Такая боль называется отражённой. Наиболее известные примеры отражённой боли - боль в правом плече и правой стороне шеи при поражении желчного пузыря, боль в нижней части спины при заболевании мочевого пузыря и, наконец, боль в левой руке и левой половине грудной клетки при заболеваниях сердца. Нейроанатомическая основа этого феномена не совсем понятна. Возможное объяснение состоит в том, что сегментарная иннервация внутренних органов та же, что и отдалённых областей поверхности тела. Однако это не объясняет причины отражения боли от органа к поверхности тела, а не vice versa. Ноцигенный тип боли терапевтически чувствителен к морфину и другим наркотическим анальгетикам и может контролироваться состоянием “ворот”.
Нейрогенная боль
Этот тип боли может быть, определён, как боль вследствие повреждения периферической или центральной нервной системы и не объясняется раздражением ноцицепторов. Такая боль имеет ряд особенностей, отличающих её, как клинически, так и патофизиологически от ноцигенной боли:
- Нейрогенная боль имеет характер дизестезии. Хотя дескрипторы: тупая, пульсирующая или давящая являются наиболее частыми для подобной боли, патогномоничными характеристиками для неё считаются определения: обжигающая и стреляющая.
- В огромном большинстве случаев нейрогенной боли отмечается частичная потеря чувствительности.
- Характерны вегетативные расстройства, такие как снижение кровотока, гипер и гипогидроз в болевой области. Боль часто усиливает или сама вызывает эмоционально-стрессовые нарушения.
- Обычно отмечается аллодиния (означающая болевое ощущение в ответ на низко интенсивные, в нормальных условиях не вызывающие боли раздражители). Например, лёгкое прикосновение, дуновение воздуха или причёсывание при тригеминальной невралгии вызывает в ответ “болевой залп”. Более ста лет назад Trousseau (1877) отметил сходство между пароксизмальной стреляющей болью при тригеминальной невралгии и эпилептическими припадками. В настоящее время известно, что все стреляющие нейрогенные боли могут лечиться антиконвульсантами.
- Необъяснимой характерной чертой даже резкой нейрогенной боли является то, что она не мешает засыпанию пациента. Однако если даже больной засыпает, он внезапно просыпается от сильной боли.
- Нейрогенная боль невосприимчива к морфину и другим опиатам в обычных анальгетических дозах. Это демонстрирует то, что механизм нейрогенной боли отличен от опиоид-чувствительной ноцигенной боли.
Нейрогенная боль имеет много клинических форм. К ним можно отнести некоторые поражения периферической нервной системы, такие как постгерпетическая невралгия, диабетическая невропатия, неполное повреждение периферического нерва, особенно срединного и локтевого (рефлекторная симпатическая дистрофия), отрыв ветвей плечевого сплетения. Нейрогенная боль вследствие поражения центральной нервной системы обычно бывает обусловлена цереброваскулярной катастрофой. Это то, что известно под классическим названием “таламического синдрома”, хотя недавние исследования показывают, что в большинстве случаев очаги поражения расположены в иных областях, чем таламус.
Многие боли клинически проявляются смешанными - ноцигенными и нейрогенными элементами. Например, опухоли вызывают повреждение тканей и компрессию нервов; при диабете ноцигенная боль возникает вследствие поражения периферических сосудов, нейрогенная - вследствие нейропатии; при грыжах межпозвонкового диска,компримирующих нервный корешок, болевой синдром включает жгучий и стреляющий нейрогенный элемент.
Психогенная боль
Утверждение что боль может быть исключительно психогенного происхождения, является дискуссионным. Широко известно, что личность пациента формирует болевое ощущение. Оно усилено у истерических личностей, и более точно отражает реальность у пациентов неистероидного типа.
Люди различных этнических групп отличаются по восприятию послеоперационной боли. Пациенты европейского происхождения отмечают менее интенсивную боль, чем американские негры или латиноамериканцы. У них также отмечается низкая интенсивность боли по сравнению с азиатами, хотя эти отличия не очень значительны (Faucett et al,1994).
Любое хроническое заболевание или недомогание, сопровождающееся болью, влияет на эмоции и поведение личности. Боль часто ведёт к появлению тревожности и напряжённости, которые сами увеличивают восприятие боли. Это поясняет важность психотерапии в контроле над болью. Биологическая обратная связь, релаксационный тренинг, поведенческая терапия и гипноз применяются в качестве психологического вмешательства и могут оказаться полезными в некоторых упорных, рефрактерных к лечению случаях. Лечение может быть более эффективным ,если учитывает психологическую и другие системы (окружающую среду, психофизиологию, познавательную, поведенческую), которые потенциально влияют на болевое восприятие. Обсуждение психологического фактора хронической боли ведётся на основе теории психоанализа, с бихевиористских, когнитивных и психофизиологических позиций.
Некоторые люди более устойчивы к развитию нейрогенной боли. Поскольку эта тенденция имеет вышеупомянутые этнические и культуральные особенности, она кажется врождённой. Поэтому так заманчивы перспективы исследований, проводимых в настоящее время и направленных на поиск локализации и выделение “гена боли”.
ПАТОФИЗИОЛОГИЯ БОЛИ
Боль может приводить к выраженной дизрегуляционной патологии и может стать причиной шока и смерти.
Боль принято подразделять на пять компонентов:
1. Перцептуальный компонент, позволяющий определить место повреждения.
2. Эмоционально–аффективный компонент, формирующий неприятное психоэмоциональное переживание.
3. Вегетативный компонент, отражающий рефлекторные изменения работы внутренних органов и тонуса симпато–адреналовой системы.
4. Двигательный компонент, направленный на устранение действия повреждающих стимулов.
5. Когнитивный компонент, формирующий субъективное отношение к испытываемой в данной момент боли на основе накопленного опыта.
Основными факторами, влияющими на восприятие боли, являются:
1. Пол.
2. Возраст.
3. Конституция.
4. Воспитание.
5. Предшествующий опыт.
6. Настроение.
7. Ожидание боли.
8. Страх.
9. Расса.
10. Национальность.
Прежде всего, восприятие боли зависит от половой принадлежности индивидуума. При предъявлении одинаковых по интенсивности болевых раздражителей у женщин объективный показатель боли (расширение зрачка) выражен сильнее. При использовании позитронной эмиссионной томографии было выявлено, что у женщин во время болевого раздражения отмечается значительно более выраженная активация структур мозга. Специальное исследование, проведенное на новорожденных, показало, что девочки проявляют более выраженную мимическую реакцию в ответ на болевое раздражение, чем мальчики. Возраст также имеет существенное значение для восприятия боли. Клинические наблюдения в большинстве случаев свидетельствуют о том, что интенсивность болевого восприятия снижается с возрастом. Например, число случаев безболевых инфарктов увеличивается у пациентов старше 65 лет, увеличивается также число случаев безболевой язвы желудка. Однако эти феномены могут объясняться различными особенностями проявления патологических процессов в пожилом возрасте, а не снижением болевого восприятия как такового. При моделировании патологической боли аппликацией капсаицина на кожу у молодых и престарелых людей возникала боль и гипералгезия одинаковой интенсивности. Однако у престарелых отмечался удлиненный латентный период до начала болевых ощущений и до развития максимальной интенсивности боли. У престарелых людей ощущение боли и гипералгезия длятся дольше, чем у молодых. Был сделан вывод, что у престарелых пациентов снижена пластичность ЦНС при длительном болевом раздражении. В клинических условиях это проявляется более медленным восстановлением и длительной повышенной болевой чувствительностью после повреждения тканей.
Известно также, что этнические группы, проживающие в северных регионах планеты, легче переносят боль по сравнению с южанами. Как уже было сказано выше, боль является многокомпонентным феноменом и ее восприятие зависит и от многих факторов. Поэтому дать четкое, всеобъемлющее определение боли довольно затруднительно. Наиболее популярным определением принято считать формулировку, предложенную группой экспертов Международной Ассоциации по изучению боли: «Боль – это неприятное ощущение и эмоциональное переживание, связанное с реальным или потенциальным повреждением тканей или описываемое в терминах такого повреждения». Данное определение свидетельствует о том, что ощущение боли может возникать не только при повреждении ткани или в условиях риска повреждения ткани, но даже при отсутствии какого–либо повреждения. В последнем случае определяющим механизмом возникновения боли является психоэмоциональное состояние человека (наличие депрессии, истерии или психоза). Иными словами, интерпретация человеком болевого ощущения, его эмоциональная реакция и поведение могут не коррелировать с тяжестью повреждения.
Боль может быть разделена на: соматическую поверхностную (в случае повреждения кожных покровов), соматическую глубокую (при повреждении костно–мышечной системы) и висцеральную. Боль может возникать при повреждении структур периферической и/или центральной нервных систем, участвующих в проведении и анализе болевых сигналов. Нейропатической болью называют боль, возникающую при повреждении периферических нервов, а при повреждении структур ЦНС – центральной болью. Особую группу составляют психогенные боли, которые возникают вне зависимости от соматических, висцеральных или нейрональных повреждений и определяются психологическими и социальными факторами. По временным параметрам выделяют острую и хроническую боль.
Острая боль – это новая, недавняя боль, неразрывно связанная с вызвавшим ее повреждением и, как правило, является симптомом какого–либо заболевания. Такая боль исчезает при устранении повреждения.
Хроническая боль часто приобретает статус самостоятельной болезни, продолжается длительный период времени и причина, вызвавшая эту боль, в ряде случаев может не определяться. Международная ассоциация по изучению боли определяет ее как «боль, которая продолжается сверх нормального периода заживления». Главным отличием хронической боли от остройявляется не временной фактор, а качественно иные нейрофизиологические, биохимические, психологические и клинические соотношения. Формирование хронической боли существенно зависит от комплекса психологических факторов. Хроническая боль является излюбленной маской скрытой депрессии. Тесная связь депрессии с хронической болью объясняется общими биохимическими механизмами.
Восприятие боли обеспечивается сложноорганизованной ноцицептивной системой, включающей в себя особую группу периферических рецепторов и центральных нейронов, расположенных во многих структурах центральной нервной системы и реагирующих на повреждающее воздействие. Иерархическая, многоуровневая организация ноцицептивной системы соответствует нейропсихологическим представлениям о динамической локализации мозговых функций и отвергает представления о «болевом центре», как конкретной морфологической структуре, удаление которой способствовало бы устранению болевого синдрома. Данное утверждение подтверждается многочисленными клиническими наблюдениями, свидетельствующими о том, что нейрохирургическое разрушение какой–либо из ноцицептивных структур у больных, страдающих хроническими болевыми синдромами, приносит только временное облегчение. Болевые синдромы, возникающие вследствие активации ноцицептивных рецепторов при травме, воспалении, ишемии, растяжении тканей, относят к соматогенным болевым синдромам.
Клинически соматогенные болевые синдромы проявляются наличием постоянной болезненности и/или повышением болевой чувствительности в зоне повреждения или воспаления. Пациенты, как правило, легко локализуют такие боли, четко определяют их интенсивность и характер. Со временем зона повышенной болевой чувствительности может расширяться и выходить за пределы поврежденных тканей. Участки с повышенной болевой чувствительностью к повреждающим стимулам называют зонами гипералгезии. Выделяют первичную и вторичную гипералгезию. Первичная гипералгезия охватывает поврежденные ткани, вторичная гипералгезия локализуется вне зоны повреждения. Психофизически области первичной кожной гипералгезии характеризуются снижением болевых порогов и болевой толерантности к повреждающим механическим и термическимстимулам. Зоны вторичной гипералгезии имеют нормальный болевой порог и сниженную болевую толерантность только к механическим раздражителям. Патофизиологической основой первичной гипералгезии является сенситизация (повышение чувствительности) ноцицепторов – А– ? и С–волокон к действию повреждающих стимулов. Сенситизация ноцицепторов проявляется снижением порога их активации, расширением их рецептивных полей, увеличением частоты и длительности разрядов в нервных волокнах, что приводит к усилению афферентного ноцицептивного потока. Экзогенное или эндогенное повреждение запускает целый каскад патофизиологических процессов, затрагивающих всю ноцицептивную систему (от тканевых рецепторов до корковых нейронов), а также целый ряд других регуляторных систем организма. Экзогенное или эндогенное повреждение приводит к выбросу вазонейроактивных веществ, ведущих к развитию воспаления. Эти вазонейроактивные вещества или так называемые медиаторы воспаления вызывают не только типовые проявления воспаления, в том числе и выраженную болевую реакцию, но и повышают чувствительность ноцицепторов к последующим раздражениям. Различают несколько типов медиаторов воспаления.
I. Плазменные медиаторы воспаления
1. Калликриин–кининовая ситема: брадикинин, каллидин
2. Компоненты комплимента: С2–С4, С3а, С5 – анафилотоксины, С3в – опсонин, С5–С9 – комплекс мембранной атаки
3. Система гемостаза и фибринолиза: XII фактор (фактор Хагемана), тромбин, фибриноген, фибринопептиды, плазмин и др.
II. Клеточные медиаторы воспаления 1. Биогенные амины: гистамин, серотонин, катехоламины
2. Производные арахидоновой кислоты: – простагландины (ПГЕ1, ПГЕ2, ПГF2 ? , тромбоксан А2, простациклин I2), – лейкотриены (ЛТВ4, МРС (А) – медленно реагирующая субстанция анафилаксии), – хемотаксические липиды
3. Гранулоцитарные факторы: катионные белки, нейтральные и кислые протеазы, лизосомальные ферменты
4. Факторы хемотаксиса: нейтрофильный хемотаксический фактор, хемотаксический фактор эозинофилов и др.
5. Кислородные радикалы: О2–супероксид, Н2О2, NO, ОН–гидроксильная группа
6. Адгезивные молекулы: селектины, интегрины
7. Цитокины: ИЛ–1, ИЛ–6, фактор некроза опухоли, хемокины, интерфероны, колониестимулирующий фактор и др.
8. Нуклеотиды и нуклеозиды: АТФ, АДФ, аденозин 9. Нейромедиаторы и нейропептиды: субстанция Р, кальцитонин ген–родственный пептид, нейрокинин А, глутамат, аспартат, норадреналин, ацетилхолин.
В настоящее время выделяют более 30 нейрохимических соединений, участвующих в механизмах возбуждения и торможения ноцицептивных нейронов в центральной нервной системе. Среди многочисленной группы нейромедиаторов, нейрогормонов и нейромодуляторов, опосредующих проведение ноцицептивных сигналов, существуют как простые молекулы – возбуждающие аминокислоты – ВАК (глутамат, аспартат), так и сложные высокомолекулярные соединения (субстанция Р, нейрокинин А, кальцитонин ген–родственный пептид и др.). ВАК играют важную роль в механизмах ноцицепции. Глутамат содержится более чем в половине нейронов дорзальных ганглиев и высвобождается под действием ноцицептивных импульсов. ВАК взаимодействуют с несколькими подтипами глутаматных рецепторов. Это прежде всего ионотропные рецепторы: NMDA–рецепторы (N–метил–D–аспартат) и АМРА–рецепторы ( амино–3–гидрокси–5–метил–4– изоксазол–пропионовой кислоты), а также металоболотропные глутаматные рецепторы. При активации этих рецепторов происходит интенсивное поступление ионов Са 2+ в клетку и изменение ее функциональной активности. Формируется стойкая гипервозбудимость нейронов и возникает гипералгезия.
Необходимо подчеркнуть, что возникшая вследствие повреждения тканей сенситизация ноцицептивных нейронов может несколько часов или дней сохраняться и после прекращения поступления ноцицептивных импульсов с периферии. Иными словами, если уже произошла гиперактивация ноцицептивных нейронов, то она не нуждается в дополнительной подпитке импульсами из места повреждения. Долговременное повышение возбудимости ноцицептивных нейронов связывают с активацией их генетического аппарата – экспрессией ранних, немедленно реагирующих генов, таких как c–fos, c–jun, junB и другие. В частности, продемонстрирована положительная корреляция между количеством fos –позитивных нейронов и степенью боли. В механизмах активации протоонкогенов важная роль отводится ионам Са 2+ . При повышении концентрации ионов Са 2+ в цитозоле, вследствие усиленного их входа через регулируемые NMDA–рецепторами Са–каналы, происходит экспрессия с–fos, с–jun , белковые продукты которых участвуют в регуляции долговременной возбудимости мембраны клетки. В последнее время важное значение в механизмах сенситизации ноцицептивных нейронов придается оксиду азота (NO), который в мозге выполняет роль нетипичного внесинаптического медиатора. Малые размеры и отсутствие заряда позволяют NO проникать через плазматическую мембрану и участвовать в межклеточной передаче сигнала, функционально соединяя пост– и пресинаптические нейроны. NO образуется из L–аргинина в нейронах, содержащих фермент NO–синтетазу. NO выделяется из клеток при NMDA–индуцируемом возбуждении и взаимодействует с пресинаптическими терминалями С–афферентов, усиливая выброс из них возбуждающей аминокислоты глутамата и нейрокининов. Оксид азота играет ключевую роль в воспалительных процессах. Локальное введение ингибиторов NО синтазы в сустав эффективно блокирует ноцицептивную передачу и воспаление. Все это свидетельствует, что оксид азота образуется в воспаленных суставах.
Кинины являются одними из наиболее мощных алгогенных модуляторов. Они быстро образуются при повреждении ткани и вызывают большинство эффектов, наблюдаемых при воспалении: вазодилатацию, увеличение сосудистой проницаемости, экстравазацию плазмы, миграцию клеток, боль и гипералгезию. Они активируют С–волокна, что приводит к нейрогенному воспалению за счет выброса из нервных терминалей субстанции Р, кальцитонин ген–родственного пептида и других нейромедиаторов. Прямой возбуждающий эффект брадикинина на чувствительные нервные окончания опосредуется B2–рецепторами и связан с активацией мембранной фосфолипазы С. Непрямое возбуждающее действие брадикинина на окончания нервных афферентов обусловлено его воздействием на различные тканевые элементы (эндотелиальные клетки, фибробласты, тучные клетки, макрофаги и нейтрофилы) и стимулированием образования в них медиаторов воспаления, которые, взаимодействуя с соответствующими рецепторами на нервных окончаниях, активируют мембранную аденилатциклазу. В свою очередь, аденилатциклаза и фосфолипаза С стимулируют образование ферментов, фосфорилирующих белки ионных каналов. Результатом фосфорилирования белков ионных каналов является изменение проницаемости мембраны для ионов, что отражается на возбудимости нервных окончаний и способности генерировать нервные импульсы. Брадикинин, действуя через В2–рецепторы, стимулирует образование арахидоновой кислоты с последующим образованием простагландинов, простациклинов, тромбоксанов и лейкотриенов. Эти вещества, обладая выраженным самостоятельным алгогенным действием, в свою очередь, потенциируют способность гистамина, серотонина и брадикинина сенситизировать нервные окончания. В результате этого из немиелинизированных С–афферентов усиливается выброс тахикининов (субстанции Р и нейрокинина А), которые, увеличивая сосудистую проницаемость, еще больше повышают локальную концентрацию медиаторов воспаления.
Применение глюкокортикоидов препятствует образованию арахидоновой кислоты за счет подавления активности фосфолипазы А2. В свою очередь, нестероидные противовоспалительные препараты (НПВП) препятствуют образованию циклических эндопероксидов, в частности, простагландинов. Под общим названием НПВП объединяются различные по химическому строению вещества, оказывающие ингибирующее влияние на циклооксигеназу. Все НПВП в той или иной степени обладают противовоспалительным, жаропонижающим и анальгетическим эффектом. К сожалению, практически все НПВП при длительном применении обладают выраженным побочным действием. Они вызывают диспепсию, пептические язвы и желудочно–кишечные кровотечения. Может возникать также необратимое снижение клубочковой фильтрации, ведущее к интерстициальному нефриту и острой почечной недостаточности. НПВП оказывают отрицательное действие на микроциркуляцию, могут вызывать бронхоспазм. В настоящее время известно, что существует две разновидности циклооксигеназ.
Циклооксигеназа–1 (ЦОГ–1) образуется в условиях нормы, а циклооксигеназа–2 (ЦОГ–2) образуется в процессе воспаления. В настоящее время разработка эффективных НПВП направлена на создание избирательных ингибиторов ЦОГ–2, которые в отличие от неселективных ингибиторов обладают значительно менее выраженным побочным действием. Вместе с тем имеются сведения о том, что препараты со «сбалансированной» ингибирующей активностью по отношению к ЦОГ–1 и ЦОГ–2 могут обладать более выраженной противовоспалительной и анальгетической активностью по сравнению со специфическими ингибиторами ЦОГ–2. Наряду с разработкой препаратов, ингибирующих ЦОГ–1 и ЦОГ–2, ведутся поиски принципиально новых анальгетических препаратов. Предполагается, что за хроническое воспаление ответственны В1–рецепторы. Антагонисты этих рецепторов значительно снижают проявления воспаления. Кроме того брадикинин участвует в выработке диацилглицерола и активирует протеинкиназу С, что, в свою очередь, усиливает сенситизацию нервных клеток. Протеинкиназа С играет очень важную роль в ноцицепции, и сейчас проводятся поиски препаратов, способных подавлять ее активность. Помимо синтеза и выброса медиаторов воспаления, гипервозбудимости спинальных ноцицептивных нейронов и усиления афферентного потока, идущего в центральные структуры мозга, определенную роль играет активность симпатической нервной системы .
Установлено, что повышение чувствительности терминалей ноцицептивных афферентов при активации постганглионарных симпатических волокон опосредуется двумя путями. Во–первых, за счет повышения сосудистой проницаемости в зоне повреждения и увеличения концентрации медиаторов воспаления (непрямой путь) и, во–вторых, за счет прямого воздействия нейротрансмиттеров симпатической нервной системы – норадреналина и адреналина на 2–адренорецепторы, расположенные на мембране ноцицепторов. При воспалении происходит активация так называемых «молчащих» ноцицептивных нейронов, которые в отсутствие воспаления не отвечают на различного рода ноцицептивные раздражения. Наряду с усилением афферентного ноцицептивного потока при воспалении отмечается усиление нисходящего контроля. Это происходит в результате активации антиноцицептивной системы. Она активируется, когда болевой сигнал достигает антиноцицептивных структур ствола мозга, таламуса и коры больших полушарий мозга. Активация околоводопроводного серого вещества и большого ядра шва вызывает высвобождение эндорфинов и энкефалинов, которые связываются с рецепторами, запуская серию физико–химических изменений, уменьшающих боль. Наибольшее число используемых анальгетиков оказывают свое действие благодаря взаимодействию с µ –рецепторами . До недавнего времени было принято считать, что опиоиды действуют исключительно на нервную систему и вызывают анальгетический эффект за счет взаимодействия с опиоидными рецепторами, локализованными в головном и спинном мозге. Однако опиатные рецепторы и их лиганды обнаружены на иммунных клетках, в периферических нервах, в воспаленных тканях. В настоящее время известно, что 70% рецепторов к эндорфину и энкефалинам расположены в пресинаптической мембране ноцицепторов и чаще всего болевой сигнал подавляется (перед тем как достигнуть задних рогов спинного мозга). Динорфин активирует рецепторы и ингибирует вставочные нейроны, что приводит к высвобождению ГАМК, которая вызывает гиперполяризацию клеток заднего рога и ингибирует дальнейшую передачу сигнала.
Опиоидные рецепторы располагаются в спинном мозге главным образом вокруг терминалей С–волокон в I пластине дорзальных рогов. Они синтезируются в телах малых клеток дорзальных ганглиев и транспортируются проксимально и дистально по аксонам. Опиоидные рецепторы неактивны в невоспаленных тканях, после начала воспаления эти рецепторы активируются в течение нескольких часов. Синтез опиатных рецепторов в нейронах ганглиев дорзальных рогов также увеличивается при воспалении, но этот процесс, включая время транспортировки по аксонам, составляет несколько дней. В клинических исследованиях установлено, что инъекция 1 мг морфина в коленный сустав после удаления мениска дает выраженный продолжительный анальгетический эффект. В дальнейшем было показано наличие опиатных рецепторов в воспаленной синовиальной ткани. Следует отметить, что способность опиатов вызывать местный анальгетический эффект при их аппликации на ткани была описана еще в XVIII веке. Так, английский врач Хеберден (Heberden) в 1774 году опубликовал работу, в которой описал положительный эффект аппликации экстракта опия при лечении геморроидальных болей. Показан хороший анальгетический эффект диаморфина при его локальной аппликации на места пролежней и на малигнизированные участки кожи, при удалении зубов в условиях выраженного воспаления окружающей ткани. Антиноцицептивные эффекты (возникающие в течение нескольких минут после аппликации опиоидов) зависят прежде всего от блокады распространения потенциалов действия, а также от уменьшения выброса возбуждающих медиаторов, в частности, субстанции Р из нервных окончаний. Морфин плохо абсорбируется через нормальную кожу и хорошо всасывается через воспаленную. Поэтому аппликация морфина на кожу дает только локальный анальгетический эффект и не действует системно.
В последние годы все большее число авторов начинают говорить о целесообразности применения сбалансированной аналгезии, т.е. сочетанном применении НПВП и опиатных анальгетиков , что дает возможность снизить дозы и соответственно побочные эффекты как первых, так и вторых. Опиоиды все чаще начинают применяться при артритических болях. В частности, в настоящее время с этой целью используется болюсная форма трамадола. Этот препарат является агонистом–антагонистом, и поэтому вероятность возникновения физической зависимости при использовании адекватных доз невелика. Известно, что опиоиды, относящиеся к группе агонистов–антагонистов, в значительно меньшей степени вызывают физическую зависимость по сравнению с истинными опиатами. Существует мнение, что опиоиды, используемые в корректных дозах, более безопасны, чем традиционные НПВС. Одним из важнейших факторов хронизации боли является присоединение депрессии. По мнению некоторых авторов, при лечении хронической боли необходимо всегда использовать антидепрессанты, независимо от ее патогенеза. Противоболевой эффект акнтидепрессантов достигается за счет трех механизмов. Первый – уменьшение депрессивной симптоматики. Второй – антидепрессанты активируют серотонические и норадренэргические антиноцицептивные системы. Третий механизм заключается в том, что амитриптилин и другие трициклические антидепрессанты действуют как антагонисты NMDA–рецепторов и взаимодействуют с эндогенной аденозиновой системой. Таким образом, в патогенезе болевых синдромов, возникающих при воспалении, участвует большое число различных нейрофизиологических и нейрохимических механизмов, которые неизбежно приводят к изменениям в психофизиологическом статусе пациента. Поэтому наряду с противовоспалительными и анальгетическими препаратами для проведения комплексной патогенетически обоснованной терапии, как правило, необходимо назначать и антидепрессанты.
МЕХАНИЗМЫ ВОЗНИКНОВЕНИЯ ПЕРВИЧНОЙ ГИПЕРАЛГЕЗИИ
Патофизиологической основой первичной гипералгезии является сенситизация (повышение чувствительности) ноцицепторов ("болевых" рецепторов) к действию повреждающих стимулов. Электрофизиологически сенситизация ноцицепторов проявляется снижением порога их активации, увеличением частоты н длительности разрядов в нервных волокнах (группы А-дельта и С), что приводит к усилению афферентного ноцицептивного потока.
Сенситизация ноцицепторов происходит а результате выделения в зоне повреждения медиаторов воспаления, включающих брадикинин, метаболиты арахидоновой кислоты (простагландины и лейкотриены), биогенные амины, пурины и ряд других веществ, которые, взаимодействуя с. соответствующими рецепторами на терминалях ноцицептивных афферентов, повышают чувствительность последних к механическим и термическим стимулам.
В настоящее время большое значение в инициации механизмов, обеспечивающих сенситизацию ноцицепторов, отводится брадикинину, который может оказыват как прямое, так и непрямое действие на чувствительны! нервные окончания.
Прямой возбуждающий эффект брадикинина на чувствительные нервные окончания опосредуется В2-рецеп торами и связан с активацией мембранной фосфолипа зы С.
Непрямое возбуждающее действие брадикинина н. окончания нервных афферентов обусловлено его воз действием на различные тканевые элементы (эндотелиальные клетки, фибробласты, тучные клетки, макрофаг” и нейтрофилы) и стимулированием образования в ни;
медиаторов воспаления (например, простагландинов), которые, взаимодействуя с соответствующими рецептора ми на нервных окончаниях, активируют мембранную аде нилатциклазу. В свою очередь аденилатциклаза и фосфолилаза С стимулируют образование ферментов, фосформирующих белки ионных каналов. Результатом фосформирования белков ионных каналов является изменение проницаемости мембраны для ионов, что отражается на возбудимости нервных окончаний и способности генерировать нервные импульсы.
Сенситизации ноцицепторов при повреждении тканей способствуют не только тканевые и плазменные алгогены, но и нейропептиды, выделяющиеся из С-афферен-тов, такие, как субстанция Р, нейрокинин А или кальцитонин-ген-родственный пептид. Эти нейропептиды обла-дают противовоспалительным эффектом, вызывая расширение сосудов и увеличение их проницаемости. Кроме этого, они способствуют высвобождению из тучных клеток и лейкоцитов простаглаидина Е2, цитокинов и биогенных аминов, которые, воздействуя на мембрану нервных окончаний, запускают, как указывалось выше, метаболические процессы, изменяющие возбудимость нер вных афферентов.
На сенситизацию ноцицепторов и развитие первичной гипералгезии также влияют эфференты симпатической нервной системы. Установлено, что повышение чувствительности терминалей высокопороговых тонких афферентов при активации постганглионарных симпатических волокон опосредуется двумя путями. Во-первых, за счет повышения сосудистой проницаемости в зоне повреждения и увеличения концентрации медиаторов воспаления (непрямой путь) и, во-вторых, за счет прямого воздействия нейротрансмиттеров симпатической нервной системы — норадреналина и адреналина, на альфа2-адренорецепторы, расположенные на мембране ноцицепторов.
МЕХАНИЗМЫ РАЗВИТИЯ ВТОРИЧНОЙ ГИПЕРАЛГЕЗИИ
Клинически область вторичной гипералгезии характеризуется повышением болевой чувствительности к интенсивным механическим стимулам вне зоны повреждения и может располагаться на достаточном удалении от места повреждения, в том числе и на противоположной стороне тела. Этот феномен, на наш взгляд, может быть объяснён только механизмами центральной нейроплас-тичности, приводящими к стойкой гипервозбудимости ноцицептивных нейронов. Подтверждением этому служат клинико-экспериментальные данные, свидетельствующие о том, что зона вторичной гипералгезии сохраняется при введении местных анестетиков в область повреждения и исчезает в случае блокады активности нейронов дорзального рога. В электрофизиологических исследованиях было продемонстрировано повышение возбудимости и реактивности нейронов спиноталамическо-го тракта к механическим раздражениям их рецептивных полей, расположенных в зоне вторичной гипералге-эии. Сенситизированмые нейроны в ответ на предъявляемые раздражения не только генерировали разряды с увеличенной частотой, но и сохраняли повышенную активность более продолжительное время.
Такая сенситизация нейронов дорзальных рогов может быть вызвана различными типами повреждений: термическими, химическими, механическими, возникающими вследствие гипоксии, острого воспаления или электрической стимуляции С-афферентов.
В настоящее время большое значение в механизмах сенситизации ноцицептивных нейронов дорзальных рогов спинного мозга придаётся возбуждающим аминокислотам и нейропептидам.
Иммуногистохимическими методами было установлено, что синаптические терминали многих тонких высоко-пороговых афферентов содержат в качестве нейроме-диатора глутамат, аспартат и ряд нейропептидов, таких, как субстанция Р, нейрокинин А, кальцитонин ген-родственный пептид и многие другие, которые высвобождаются из пресинаптических терминалей под действием ноцицептивных импульсов.
Выделение глутамата из пресинаптических терминалей происходит при любом ноцицептивном воздействии — коротком (уколе) или длительном. Считается, что реализация физиологических болевых реакций (например, защитный рефлекс отдёргивания) при выделении глутамата опосредуется через АМРА-рецепторы (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid), в то время как NMDA-рецепторы (N-methyl-D-aspartate) обеспечивают длительную, в том числе и патологическую гипер-активность ноцицептивных нейронов.
Активирующее действие глутамата на ноцицептивные нейроны потенцируется субстанцией Р, которая как медиатор сосуществует в более 90 процентах терминалей высокопороговых сенсорных волокон, содержащих глутамат. Субстанция Р, как и другие нейрокинины, взаимодействуя с NK-1 рецепторами (neurokinin-1), не только повышает концентрацию внутриклеточного Са2+ посредством его мобилизации из внутриклеточных депо, но и усиливает активность NMDA-рецепторов.
В последнее время важное значение в механизмах сенситизации ноцицептивных нейронов придается оксиду азота (NO), который в мозге выполняет роль нетипичного внесинаптического медиатора. NO образуется в нейронах, содержащих фермент NO-синтетазу из L-аргини-на. NO выделяется из клеток при NMDA-индуцируемом возбуждении и взаимодействует с пресинаптическими тер-миналями С-афферентов, усиливая выброс из них глю-тамата и нейрокининов.
Таким образом, индуцированное ноцицептивной стимуляцией высвобождение глутамата и нейропептидов из центральных терминалей С-афферентов вызывает стойкие изменения возбудимости ноцицептивных нейронов, усиление их спонтанной активности, увеличение длительности послеразрядов и расширение рецептивных полей.
Необходимо подчеркнуть, что возникшая вследствие повреждения тканей сенситизация ноцицептивных нейронов может несколько часов или дней сохраняться и после прекращения поступления ноцицептивных импульсов с периферии, иными словами, если уже произошла гиперактивация ноцицептивных нейронов, то она не нуждается в дополнительной подпитке импульсами из места повреждения. Долговременное повышение возбудимости ноцицептивных нейронов связывают с активацией их генетического аппарата — экспрессией ранних, немедленно реагирующих генов, таких, как c-fos, c-jun, junB и другие.
В механизмах активации прото-онкогенов важная роль отводится ионам Са2+. При повышении концентрации ионов Са2+ в цитозоле, вследствие усиленного их входа через регулируемые NMDA-рецепторами Са-каналы, происходит экспрессия c-fos, c-jun, белковые продукты которых участвуют в регуляции долговременной возбудимости мембраны клетки.
Помимо сенситизации ноцицептивных нейронов дор-зального рога, повреждение тканей вызывает также повышение возбудимости и реактивности ноцицептивных нейронов и в вышележащих центрах, включая ядра тала-муса и соматосенсорную кору больших полушарий.
Таким образом, периферическое повреждение запускает целый каскад патофизиологических и регулятор-ных процессов, затрагивающих всю ноцицептивную систему от тканевых рецепторов до корковых нейронов. Вместе с тем, если кратко охарактеризовать патогенез соматогенных болевых синдромов, то можно отметить следующие наиболее важные звенья:
- Раздражение ноцицепторов при повреждении тканей
- Выделение алгогенов и сенситизация ноцицепторов в области повреждения
- Усиление ноцицептивного афферентного потока с периферии
- Сенситизация ноцицептивных нейронов на различных уровнях ЦНС
В связи с этим патогенетически обоснованным при соматогенных болевых синдромах считается применение средств, направленных;
- На подавление синтеза медиаторов воспаления
- На ограничение поступления ноцицептивной импуль-сации из зоны повреждения в ЦНС.
- На активацию структур антиноцицептивной системы.
Ограничение входа ноцицептивной импульсации в ЦНС достигается при помощи различного рода блокад местными анестетиками, которые не только могут предотвратить сенситизацию ноцицептивных нейронов, но и способствовать нормализации микроциркуляции в зоне повреждения, улучшая восстановление повреждённых тканей. Использование нестероидных и/или стероидных противовоспалительных препаратов обеспечивает подавление синтеза алгогенов, снижение воспалительных реакций и тем самым уменьшает сенситизацию ноцицепторов. Для активации структур антиноцицептивной системы, осуществляющих контроль за проведением ноцицептивной импульсации в ЦНС, может быть использован целый спектр (в зависимости от клинических показаний) медикаментозных (наркотические и ненаркотические аналгетики, бензодиазепины, агонисты альфа-2-адрено-рецепторов и другие) и немедикаментозных (чрезкож-ная электронейростимуляция, рефлексотерапия, физиотерапия) средств, снижающих болевую чувствительность и негативное эмоциональное переживание.
ПАТОФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ НЕЙРОГЕННЫХ БОЛЕВЫХ СИНДРОМОВ
Вызванные повреждением периферических нервов или структур центральной нервной системы непременные болевые синдромы представляют собой один из клинических парадоксов. Действительно, нарушение целостности нерва должно приводить к снижению сенсорных ощущений в иннервируемой им области. Однако пациенты с полной денервацией конечности, например, при авульсии плечевого сплетения, часто испытывают в парализованной руке мучительные боли.
Считается, что нейрогенные болевые синдромы возникают при повреждении структур, связанных с проведением ноцицептивных сигналов. Важным доказательством этого положения являются клинические наблюдения. Так, у пациентов после повреждения периферических нервов в области постоянной болезненности, помимо парестезии и дизестезии, отмечается повышение порогов на укол и ноцицептивный электрический стимул. У больных сирингомиелией выраженный болевой синдромвозникает при распространении патологического процесса на дорзальные рога спинного мозга, при этом снижается температурная и болевая чувствительность возникает при распространении патологического процесса на дорзальные рога спинного мозга, при этом снижается температурная и болевая чувствительность. У больных с рассеянным склерозом, страдающих также приступами болевых пароксизмов, склеротические бляшки обнаружены в афферентах спиноталамического тракта. Изолированное поражение вентролатеральных квадрантов спинного мозга наряду с возникновением спонтанных болей и дизестезии вызывает снижение болевой и температурной чувствительности. При клиническом обследовании пациентов с таламическими болями, возникающими после церебро-васкулярных нарушений, также отмечается снижение температурной и болевой чувствительности. При этом очаги повреждений, выявленные методом компьютерной томографии, соответствуют местам прохождения афферентов соматической чувствительности в стволе мозга, среднем мозге и таламусе. Спонтанные боли возникают у людей при повреждении соматосенсорной коры, являющейся конечным корковым пунктом восходящей ноцицептивной системы. Всё это свидетельствует о том, чтонейрогенный болевой синдром может возникнуть независимо от места повреждения боль-проводящих путей.
Для непременного болевого синдрома характерно наличие следующих симптомов: постоянная, спонтанная или пароксизмальная боль, сенсорный дефицит в зоне болезненности, аллодиния (появление болезненного ощущения при лёгком неповреждающем воздействии), гипе-ралгезия и гиперпатия. Полиморфизм болевых ощущений у разных пациентов обусловлен характером, степенью и местом повреждения. При неполном, частичном повреждении ноцицептивных афферентов чаще возникает острая периодическая пароксизмальная боль, подобная удару электрического тока и длящаяся всего несколько секунд. В случае полной денервации боли чаще всего имеют постоянный характер.
Одной из типичных черт нейрогенных болевых синдромов является аллодиния — болевое ощущение, возникающее при слабом механическом раздражении кисточкой определённых кожных участков. В механизме возникновения аллодинии большое значение придаётся сенситизации нейронов широкого динамического диапазона (ШДД-нейроны), которые одновременно получают афферентные сигналы от низкопороговых "тактильных" А-бета волокон и высокопороговых "болевых" С-воло-кон.
Механизмы возникновения нейрогенных болевых синдромов в корне отличаются от болевых синдромов, вызванных повреждением соматических тканей или внутренних органов.
Развитие нейрогенных болевых синдромов в настоящее время связывают с морфофункциональными изменениями как в периферическом травмированном нерве, так и в центральной нервной системе.
При повреждении нерва, как известно, возникает атрофия и гибель нервных волокон (причём преимущественно гибнут немиелинизированные С-афференты). Вслед за дегенеративными изменениями начинается регенерация нервных волокон, которая сопровождается образованием невром. Структура нерва становится неоднородной, что является причиной нарушения проведения возбуждения по нерву.
На сегодняшний день существует большое количество клинических и экспериментальных работ, свидетельствующих о наличии в повреждённом нерве анормальной эктопической активности. Считается, что спонтанные эктопические разряды являются основой для парестезий и болей у пациентов с повреждёнными нервами. Ненормальная электрическая активность зарегистрирована как в невроме, так и в самом нервном волокне. Эти локусы ненормальной активности получили название эктопических нейрональных пейсмекерных мест, обладающих самоподдерживающейся активностью. Источником эктопической активности являются зоны демиелинизации и регенерации нерва, невромы, а также нервные клетки дорзальных ганглиев, связанные с повреждёнными аксонами.
Использование специальных методов при проведении электрофизиологических исследований позволило установить, что генерация невромой спонтанной эктопической активности вызвана нестабильностью мембранного потенциала, причиной которой является увеличение на мембране количества натриевых каналов.
Эктопическая активность существенным образом отличается от паттернов нормальных разрядов. Если в нормальных условиях длительность разряда ограничена продолжительностью стимула, то эктопический разряд имеет не только увеличенную амплитуду сигнала, но и большую продолжительность. В результате чего разряд, возникший в одном волокне, может активировать другие волокна. Подобное перекрёстное возбуждение волокон или эфаптическая передача сигнала наблюдается только в условиях патологии и является основой для дизэсте-зии и гиперпатии.
На повышение фоновой активности повреждённых нервов существенное влияние оказывает увеличение чувствительности нервных волокон к механическим и химическим стимулам. Появление механо- и хемочувствитель-ности в нервных волокнах увеличивает диапазон раздражителей, способных вызвать генерацию потенциалов действия.
Изменение возбудимости нервных волокон при повреждении происходит в течение первых десяти часов и во многом зависит от аксонального транспорта. Установлено, что блокада аксотока задерживает развитие механочувствительности нервных волокон.
Современные клинические и экспериментальные исследования свидетельствуют, что болевой синдром, вызванный повреждением нервов, наряду с появлением анормальной активности в нервных волокнах, сопровождается также повышением возбудимости и реактивности нейронов дорзальных рогов спинного мозга и вышележащих структур ноцицептивной системы. Центральная сенситизация при повреждении периферических нервов или дорзальных корешков характеризуется увеличением спонтанной импульсной активности нейронов дорзального рога и появлением у них вспышек высокочастотных разрядов расширением рецептивных полей, повышением реактивности нейронов на периферические раздражения и удлинением времени послеразрядов.
Одновременно с увеличением нейрональной активности на уровне дорзальных рогов спинного мозга у животных с экспериментальными моделями нейрогенных болевых синдромов регистрируется усиление активности нейронов в таламических ядрах — вентробазальном и парафасцикулярном комплексах, в соматосенсорной коре больших полушарий. Однако наблюдаемые изменения активности нейронов в структурах ноцицептивной системы при нейрогенных болевых синдромах имеют ряд принципиальных отличий по сравнению с механизмами, приводящими к сенситизации ноцицептивных нейронов у пациентов с соматогенными болевыми синдромами.
Структурной основой нейрогенных болевых синдромов, согласно представлениям Г. Н. Крыжаиовского, является агрегат взаимодействующих сенситизи-рованных нейронов с нарушенными тормозными механизмами и повышенной возбудимостью. Такие агрегаты способны развивать длительную самоподдерживающуюся патологическую активность, для которой не обязательна афферентная стимуляция с периферии. Агрегаты нейронов с патологической активностью могут возникать вследствие деаффереитации структур, осуществляющих проведение и обработку ноцицептивных сигналов на разных уровнях спинного и головного мозга. Например, де-аффервнтация спинного мозга у животных путем перерезки дорзальных корешков приводит к появлению вы- сокочастотных пачечных разрядов в нейронах дорзаль-ных рогов. Схожая "эпилептиформная" активность в спинном мозге также была зарегистрирована и у людей, страдающих болевым синдромом, вызванным травматическим повреждением спинномозговых корешков.
Формирование агрегатов гиперактивных нейронов осуществляется синаптическими и несинаптическими механизмами.
Одним из условий образования агрегатов при повреждении нейрональных структур является возникновение устойчивой деполяризации нейронов, которая обусловлена:
- выделением возбуждающих аминокислот, нейро-кининов и оксида азота;
- дегенерацией первичных терминалей и транссинап-тической гибелью нейронов дорзального рога с последующим их замещением глиальными клетками;
- дефицитом опиоидных рецепторов и их лигандов, контролирующих возбуждение ноцицептивных клеток;
- повышением чувствительности тахикининовых рецепторов к своим лигандам — субстанции Р и нейроки-нину А.
Важное значение в механизмах образования агрегатов гиперактивных нейронов в структурах ЦНС отводится подавлению тормозных реакций, которые опосреду-ются глицином и гаммааминомасляной кислотой (ГАМК). Подтверждением этому служит возникновение болевого синдрома у крыс при аппликации на дорзальную поверхность спинного мозга стрихнина — препарата, блокирующего постсинаптическое глициновое торможение, или веществ, нарушающих ГАМК-ергическое торможение (например, бикукулина или пикротоксина). Внутриспиналь-ное введение стрихнина усиливает также развитие болевого синдрома при повреждении седалищного нерва. Дефицит спинального глицинергического и ГАМК-ерги-ческого торможения возникает и при локальной ишемии спинного мозга, приводящей к развитию выраженной аллодинии и нейрональной гипервозбудимости.
В условиях недостаточности тормозных механизмов и повышенной возбудимости нейронов облегчаются синаптические межнейронные взаимодействия, происходит активация "молчащих" неактивных синапсов и объединение близлежащих сенситизированных нейронов в единый агрегат.
При формировании нейрогенных болевых синдромов глубокие нейропластические преобразования затрагивают не только первичное ноцицептивное реле, но и высшие структуры системы болевой чувствительности. Их деятельность изменяется настолько, что электростимуляция центрального серого вещества (одной из важнейших структур антиноцицептивной системы), которая эффективно используется для купирования болей у онкологических больных, не приносит облегчения пациентам с нейрогенными болевыми синдромами.
Таким образом, в основе развития нейрогенных болевых синдромов лежат структурно-функциональные изменения, затрагивающие периферические и центральные отделы системы болевой чувствительности. Под влиянием повреждающих факторов возникает дефицит тормозных реакций, приводящий к развитию в первичном ноцицеп-тивном реле агрегатов гиперактивных нейронов, продуцирующих мощный афферентный поток импульсов, который сенситизирут сулраспинальные ноцицептивные центры, дезинтегирует их нормальную работу и вовлекает их в патологические реакции. Происходящие при этом пластические изменения объединяют гхпеоактивированные ноцицептивные структуры в новую патодинамическую организацию — патологическую алгическую систему, результатом деятельности которой является болевой синдром.
Резюмируя приведённые клинико-экспериментальные данные по механизмам развития нейрогенных болевых синдромов, можно выделить следующие основные этапы патогенеза:• образование невром и участков демиелинизации в повреждённом нерве, являющихся периферическими пей-смекерными очагами патологического электрогенеза:
- возникновение механо- и хемочувствительности в нервных волокнах
- появление перекрёстного возбуждения в нейронах дорзальных ганглиев
- формирование агрегатов гиперактивных нейронов с самоподдерживающейся активностью в ноцицептивных структурах ЦНС
- системные нарушения в работе структур, регулирующих болевую чувствительность
Учитывая особенности патогенеза нейрогенных болевых синдромов, оправданным при лечении данной патологии будет использование средств, подавляющих патологическую активность периферических пеисмекеров и агрегатов гипервозбудимых нейронов.
Приоритетными в настоящее время считаются следующие лекарственные средства: антиконвульсанты и препараты, усиливающие тормозные реакции в ЦНС — бензодиазепины, агонисты рецепторов ГАМК, блокаторы кальциевых каналов, антагонисты возбуждающих аминокислот, периферические и центральные блокаторы Na-каналов.