Естествознание прошло три стадии и вступило в четвертую. 1 Стадия древнегреческой натурфилософии

Вид материалаДокументы
Л. Больцманом, предложившим
А. Эйнштейн выступил с
Эволюция Вселенной
Развитие Вселенной.
Отделение сильного взаимодействия от электрослабого
Разделение электрослабого взаимодействия на слабое и электромагнитное
Слияние кварков в адроны
Отделение нейтрино и антинейтрино
Период зарождения химической науки
Структурная химия. Учение о химических процессах.
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   12
Космологическая модель английского физика Фурнье Дальба (1911 г.). напоминает матрешку. Вселенные меньших размеров существуют в более крупных и в их устройстве проявляются одни и те же правила .

6. После создания планетарной модели атома Резерфордом эти нашли отражение в космологии. Предположили, что ядро атома - это Солнце, а электроны - планеты, на которых может быть жизнь. Таким образом, наш мир является такой же элементарной единицей Мегамира.

7. Значительным явлением в космологии была гипотеза тепловой смерти Вселенной Р. Клазиуса и У. Кельвина, вытекающая из второго закона термодинамики. В соответствии с этой гипотезой, различные виды энергии при всех превращениях в конечном итоге переходят в тепло, которое стремится к состоянию термодинамического равновесия, т. е. рассеивается в пространстве. Таким образом, Вселенную ожидает тепловая смерть.

Попытка решения термодинамического парадокса была предпринята Л. Больцманом, предложившим вероятностную гипотезу развития Вселенной. По его мнению, Вселенная почти всегда пребывает в состоянии тепловой смерти, но иногда в некоторых ее областях возникают крайне маловероятные отклонения от обычного состояния (флуктуации). Таким участком является Земля и весь видимый космос. В целом Вселенная - это мертвый океан с небольшими островками жизни.

Такое объяснение не смогло удовлетворить многих ученых, т. к. расчеты показали, что вероятность возникновения такой гигантской флуктуации в пространстве практически равна нулю.

Три космологических парадокса: фотометрический, гравитационный и термодинамический - заставили ученых усомниться в бесконечности и вечности Вселенной.

8. В 1917 г. А. Эйнштейн выступил с гипотезой о стационарной Вселенной. Из расчетов Эйнштейна следовало, что Вселенная является четырехмерной сферой. Таким образом, Вселенная конечна по объему, как поверхность любой сферы, и не имеет границ. Количество звезд и звездных систем Вселенной, хотя и огромно, но конечно. В соответствии с теорией Эйнштейна, Вселенная не вечна и развивается в направлении тепловой смерти.

9. В 1922 году российский физик Александр Фридман на основании строгих расчетов сформулировал гипотезу о нестационарности Вселенной. По его мнению, Вселенная Эйнштейна не может быть стационарной. Она непременно должна расширяться, причем расширяться должно пространство. Вселенная Фридмана подобна раздувающемуся мыльному пузырю, площадь поверхности и радиус которого непрерывно увеличиваются. Из расчетов Фридмана вытекают три возможных следствия:

 Вселенная и ее пространство расширяются с течением времени;

 Вселенная сжимается;

 во Вселенной чередуются циклы расширения и сжатия;

 Доказательства в пользу модели расширяющейся Вселенной были получены в 1926 году американским астрономом Д. Хабблом, открывшим красное смещение, т. е. увеличение длин волн у наблюдаемых объектов вследствие их удаления друг от друга. По последним измерения скорость удаления галактик друг от друга составляет 55 км/с. После этого открытия в космологии утвердилась модель расширяющейся Вселенной.

цикличности расширений и сжатий пока остается открытым.

Эволюция Вселенной

Вселенная - самый глобальный объект Мегамира, безграничный во времени и пространстве. Согласно современных представлений она представляет собой громадную необъятную сферу. Существуют научные гипотезы об «открытой», то есть «непрерывно расширяющейся», равно как и о «закрытой», то есть «пульсирующей», Вселенной. Обе гипотезы существуют в нескольких вариантах. Однако требуются очень основательные исследования, пока та или иная из них не превратится в обоснованную научную теорию.

Метагалактика - часть Вселенной, доступная изучению астрономическими средствами. Она состоит из сотни миллиардов галактик, каждая из которых вращается вокруг своей оси и одновременно разбегаются друг от друга со скоростями от 200 до 150 000 км/с.

Галактика - скопление звезд в объеме, имеющем форму линзы. Кроме звезд в состав галактик входят межзвездное вещество (газы, пыль, астероиды, кометы), электромагнитные, гравитационные поля, космические излучения. Солнечная система расположена вблизи галактической плоскости нашей галактики. Для земного наблюдателя звезды, концентрирующиеся в галактической плоскости, сливаются в видимую картину Млечного пути.

Квазары - это удаленные от нашей галактики на протяжении нескольких миллиардов световых космические объекты, каждый из которых, несмотря на относительно небольшие размеры, по мощности излучения превосходит обычную галактику. Принимая во внимание их компактность, их назвали «вроде бы звезды» (квази-звездные объекты, квазары). Пока ученым неясно, что такое квазары. Согласно одних гипотез, это сверхгалактики, по другим - взорвавшиеся галактики, согласно третьих, зародыши будущих галактик.

Межзвездная среда. То, что между звездами существует некая ослабляющая их свет среда, предположил еще в 1847 году вы­дающийся российский ученый В. Я. Струве. Постепенно выяснилось, что межзвездные пространства пронизываются видимыми и невидимыми лучами, что здесь существуют магнитные поля, пыль, газ из атомов, ионов и молекул. Хотя эта материя межзвездной среды очень разрежена, масса ее огромна.

Межзвездный газ распределен неравномерно: местами он собирается в сравнительно плотные облака. В нашей Галактике основная масса газа с наибольшей концентрацией собрана в плоскости ее спиральных рукавов. Газ при этом находится в движении.

Совсем недавно были открыты «невидимые» звезды, излучающие в невидимом инфракрасном диапазоне. Детальные исследования показали, что эти звезды окружены «коконами» — плотными газово-пылевыми оболочками. Ученые полагают, что сами звезды образовались в результате сгущения разреженной материи, а газово-пылевая оболочка - это то, что не пошло на образование звезды.

Большинство астрономов считает, что звезды, а также планеты и малые небесные тела образуются в результате взаимного притяжения частиц газово-пылевых облаков, широко рассеянных по всей Вселенной. Из рассеянного между звездами огромного количества газа и пыли до сих пор продолжают рождаться звезды.

Современное естествознание объясняет возникновение Вселенной с помощью теории Большого взрыва. В соответствии с этой теорией, примерно 15 млрд. лет назад наша Вселенная была сжата в комок, в миллиарды раз меньший булавочной головки. По математическим расчетам, ее радиус практически был равен нулю, а плотность близка к бесконечности. Такое состояние получило название сингулярного - бесконечная плотность в точечном объеме. В состоянии сингулярности кривизна пространства и времени становится бесконечной, а сами эти понятия теряют смысл. Это состояние физики называют «ложным» вакуумом. Оно характеризуется энергией предельно высокой плотности, которой соответствует предельно высокая плотность вещества. В этом состоянии вещества в нем могут возникать сильнейшие напряжения и отрицательное давление, равносильное гравитационному отталкиванию огромной величины. Неустойчивое исходное состояние хаоса привело к взрыву, породившему скачкообразный переход к расширяющейся Вселенной.

Развитие Вселенной. Самый ранний этап развития Вселенной занимает ничтожно малый промежуток времени - до 10-33 с после взрыва. С началом стремительного расширения во Вселенной возникает пространство и время. Вселенная раздувается до гигантского пузыря, превышающего на несколько порядков радиус современной Вселенной. Частицы вещества в этот период полностью отсутствуют. К концу этой фазы инфляции Вселенная была пустой и холодной.

После инфляции начался горячий этап в развитии Вселенной. Всплеск тепла был обусловлен огромным запасам энергии, заключенным в «ложном» вакууме. После распада вакуума его энергия выделилась в виде излучения, разогревшую Вселенную до 1027К. При этой температуре лептоны и кварки были неразличимы, свободно превращаясь друг в друга. Существовал единый тип взаимодействия, в котором роль частицы-посредника выполнял Х-бозон - тяжелая частица, превышающая массу протона в 1014 раз.

Отделение сильного взаимодействия от электрослабого произошло через 10-33 с после «начала». Х-бозон распался на глюоны и безмассовый бозон - переносчик электрослабого взаимодействия. После прекращения переходов кварков в лептоны, число частиц несколько превысило число античастиц, нарушив симметрию мира. Это в дальнейшем определило развитие вещества Вселенной - галактик, звезд, планет и т. д.

Разделение электрослабого взаимодействия на слабое и электромагнитное произошло в на 10-10 с, когда температура снизилась до 1015К. Электрослабый бозон разделился на фотон и три тяжелых векторных бозона. С этого момента во Вселенной стали существовать все четыре типа фундаментальных физических взаимодействия - гравитационное, электромагнитное, слабое и сильное.

Слияние кварков в адроны происходит при снижении температуры до 1015К.

Ранний период развития Вселенной завершается лептонно-фотонной эрой. Частицы и античастицы аннигилируют, порождая фотоны и энергию. Такое состояние было через 0,01 с после начала развития.

Отделение нейтрино и антинейтрино от газовой смеси произошло в течение первой секунды, когда температура снизилась до 10 млрд. градусов.

Соединение и аннигиляция электронов и позитронов возникло на 14 секунде развития, при снижении температуры до 3 млн. градусов. Избыток электронов компенсировал положительный заряд протонов. Часть протонов превратилась в свободные нейтроны, определив их соотношение 8:1. Установившаяся пропорция сохранилась до настоящего времени. Такое же соотношение во Вселенной водорода и гелия. Формирование ранней Вселенной завершилось спустя 3 минуты 2 секунды от начала развития.

Нуклеосинтез, т. е. соединение протонов и нейтронов в ядра, начался при падении температуры до миллиарда градусов. Через полчаса после «начала» барионное вещество (ядра атомов) состояло из 28 % гелия, остальная часть - ядра водорода (протоны). Вещество составляло лишь ничтожную часть Вселенной. Основными же ее компонентами были фотоны и нейтрино.

Этап медленного остывания продолжался почти 500 тысяч лет. Вселенная, оставаясь однородной, становилась все более разреженной. Когда она остыла до 3 тысяч градусов ядра водорода (протоны) и ядра атомов гелия уже могли захватывать свободные электроны, и превращаться в нейтральные атомы водорода и гелия. Излучение отделилось от атомарного вещества и образовало реликтовое излучение. В настоящее время оно сохранилось в виде радиоволн сантиметрового диапазона, которые равномерно поступают из всех точек небосвода и не связаны с каким-либо радиоисточником.

В результате возникла однородная Вселенная, представляющая собой смесь трех субстанций:

         лептонов (нейтрино и антинейтрино);

         реликтового излучения;

         вещества (атомов водорода, гелия и их изотопов).

 По современным оценкам, переход от однородной Вселенной к структурной занял от 1 до 3 млрд. лет. Предполагается, что в расширяющейся Вселенной случайно возникают уплотненные участки, в которых плотность постепенно возрастает. Появление таких уплотнений стало началом рождения во Вселенной крупномасштабных структур.

Важнейшим узловым этапом эволюции Вселенной стало образование всей совокупности химических элементов. Они появились в звездах в ходе звездного нуклеосинтеза.

Следующим важнейшим этапом в формировании структур Вселенной является объединение атомов химических элементов в молекулы. В межзвездной среде встречаются молекулы водорода, мельчайшие пылинки, в основе которых находятся кристаллы льда или углерод с примесью различных соединений. Молекулярный водород вместе с гелием образует газовые межзвездные облака, а скопления газов вместе с пылинками - газово-пылевые облака.










Физика Земли.

Возраст 5х109 лет

ГеосферыЗемли – оболочки Земли:
  1. Атмосфера h=2000 км, 50% массы – до высоты 5-6 км.,
    1. Тропосфера h=10-18 км, t: от +20 град. до -55 град.
    2. Стратосфера, h=50 км
    3. Мезосфера h=80 км, поглощает у/фиолет
    4. Ионосфера h=800 км.
    5. Экзосфера h=2000 км.
  2. Магнитосфера
  3. Литосфера – твердая оболочка Земли
    1. Земная кора с частью подстилающей мантии –литосфера h=100 км (35-65 км на континенте

h=6-8 км под океаном)
    1. Мантия h=120-150 км. На континенте

h=40-400 км под океаном
    1. Астеносфера – мантия глубокой вязкости до h=410 км.
    2. Внешнее земное ядро h=2900 км

Внутреннее земное ядро h=1250 км 80% железа, 20% - никель

Геодинамические процессы – обуславливают видоизменение земной коры и ее поверхности.
  1. Эндогенные процессы вызваны внутренними силами Земли: а) движение тектонических плит; б) Вулканическая деятельность; в) Землетрясения.

2. Экзогенные процессы происходят на поверхности Земли или на небольшой глубине в земной коре и обусловлены энергией солнечного излучения, гравитацией и жизнедеятельность организмов. Это процессы: а) Выветривание- процессы механического разрушения и химического изменения горных пород и минералов под влиянием атмосферных явлений, грунтовых и поверхностных вод, жизнедеятельности растительных и животных организмов и продуктов их разложения. С выветриванием связан важный процесс почвообразования. б) Флювиальные процессы – совокупность процессов, осуществляемых текучими поверхностными потоками. Их результат – размыв водными потоками земной поверхности , они развиваются в речных бассейнах; в) Гляциальные процессы - обусловлены деятельностью льда, т.е. современным и прошлыми оледенениями. Г) Гравитационные процессы – процессы медленного сползания слоев донных осадков океанического дна под действием силы тяжести.

Концепции химии и геологии

13

Уровни химического знания, этапы развития, теории

Период зарождения химической науки охватывает три столетия - с XVI по XIX вв. Условиями становления химии как науки были:

         обновление европейской культуры;

         потребность в новых видах промышленного производства;

         открытие Нового света;

         расширение торговых отношений.

 

Отделившись от старой алхимии, химия приобрела большую свободу исследования и утвердилась как единая независимая наука.

В XVI в. на смену алхимии пришло новое направление, которое занималось приготовлением лекарств. Это направление получило название ятрохимии. Основателем ятрохимии был швейцарский ученый Теофраст Бомбаст фон Гогенгейм, известный в науке под именем Парацельс. Ятрохимия стремилась соединить медицину с химией, используя препараты нового типа, приготовленные из минералов. Ятрохимия принесла значительную пользу химии, т. к. способствовала освобождению ее от влияния алхимии и заложила научно-практические основы фармакологии.

В XVII столетии, в век бурного развития механики, в связи с изобретением паровой машины, возник интерес химии к процессу горения. Итогом этих исследований стала теория флогистона, основоположником которой был немецкий химик и врач Георг Шталь. Теория флогистона основана на утверждении, что все горючие вещества богаты особым горючим веществом - флогистоном. Чем больше флогистона содержит вещество, тем более оно способно к горению. Металлы тоже содержат флогистон, но теряя его, превращаются в окалину. При нагревании окалины с углем, металл забирает от него флогистон и возрождается. Теория флогистона, несмотря свою на ошибочность, давала приемлемое объяснение процессу выплавки металлов из руд. Необъяснимым оставался вопрос, почему зола и сажа, оставшиеся от сгорания таких веществ, как дерево, бумага, жир, намного легче, чем исходное вещество.

В XVIII в. французский физик Антуан Лоран Лавуазье, нагревая различные вещества в закрытых сосудах, установил, что общая масса всех веществ, участвующих в реакции, остается без изменений. Лавуазье пришел к выводу, что масса веществ никогда не создается и не уничтожается, а лишь переходит от одного вещества к другому. Этот вывод, известный сегодня как закон сохранения массы, стал основой для всего процесса развития химии XIX в.

Продолжая исследования, Лавуазье установил, что воздух является не простым веществом, а смесью газов, пятую часть которого составляет кислород, а остальные 4/5 азот. В это же время английский физик Генри Кэвендиш выделил водород и, сжигая его, получил воду, доказав, что вода - это соединение водорода и кислорода.

Проблема изучения химического состава веществ была главной в развитии химии вплоть до 30-40-х годов XIX в. Английский химик Джон Дальтон открыл закон кратных отношений и создал основы атомной теории. Он установил, что два элемента могут соединяться между собой в разных соотношениях, при этом каждая комбинация представляет собой новое соединение. Дальтон исходил из положения древних атомистов о корпускулярном строении материи, но, основываясь на понятии химического элемента, сформулированном Лавуазье, полагал, что все атомы отдельного элемента одинаковы и характеризуются своим атомным весом. Этот вес относителен, т. к. абсолютный атомный вес атомов определить невозможно. Дальтон составил первую таблицу атомных весов на основе водородной единицы.

Поворотный этап в развитии химической атомистики был связан с именем шведского химика Иенса Якоба Берцелиуса, который изучая состав химических соединений, открыл и доказал закон постоянства состава. Это позволило объединить атомистику Дальтона с молекулярной теорией, которая предполагала существование частиц (молекул), образованных из двух или более атомов и способных перестраиваться при химических реакциях. Заслугой Берцелиуса является введение химической символики, позволяющей обозначать не только элементы, но и химические реакции. Символ элемента обозначался первой буквой его латинского или греческого названия. В случаях, когда названия двух или более элементов начинаются с одной буквы, к ним добавляется вторая буква названия. Эта химическая символика была признана международной и используется в науке до настоящего времени. Берцелиусу также принадлежит идея разделения всех веществ на неорганические и органические.

До середины XIX в. развитие химии происходило беспорядочно и хаотически: открывались и описывались новые химические элементы, химические реакции, благодаря чему накопился огромный эмпирический материал, который требовал систематизации. Логическим завершением всего многовекового процесса развития химии стал первый международный химический конгресс, состоявшийся в сентябре 1860 г. в немецком городе Карлсруэ. На нем были сформулированы и приняты основополагающие принципы, теории и законы химии, которые заявили о химии как о самостоятельной развитой науке. Этот форум, внеся ясность в понятия атомных и молекулярных весов, подготовил условия для открытия периодической системы элементов.

Изучая химические элементы, расположенные в порядке увеличения их атомных весов, Менделеев обратил внимание на периодичность изменения их валентностей. Основываясь на увеличении и уменьшении валентности элементов в соответствии с их атомным весом, Менделеев разделил элементы на периоды. Первый период включает только водород, а затем следуют два периода по семь элементов, а затем периоды, где более семи элементов. Такая форма таблицы была удобной и наглядной, что сделало ее признанной мировым сообществом ученых.

Настоящим триумфом периодической системы стало предсказание свойств еще не открытых химических элементов, под которые в таблице были оставлены пустые клетки. Открытие периодического закона Д. И. Менделевым стало выдающимся событием в химии, приведя ее в состояние стройной систематизированной науки.

Следующим важным этапом в развитие химии явилось создание теории химического строения органических соединений А. М. Бутлеровым, которая утверждала, что свойства веществ зависят от порядка расположения атомов в молекулах и от их взаимного влияния.

На основе системы химических наук складывается химическая картина мира, т. е. взгляд на природу с точки зрения химии. Ее содержанием являются:

1.       Учение о химической организации объектов живой и неживой природы.

2.       Представление о происхождении всех основных типов природных объектов, их естественной эволюции.

3.       Зависимость химических свойств природных объектов от их структуры.

4.       Закономерности природных процессов как процессов химического движения.

5.       Знание о специфических свойствах искусственно синтезируемых объектов.



14

Химические системы и процессы

Структурная химия. Учение о химических процессах.

Характер любой системы зависит не только от состава и строения элементов, но и от их взаимодействия. Именно такое взаимодействие определяет специфические, целостные свойства самой системы. Сам термин «структурная химия» - понятие условное. В нем подразумевается такой уровень химических знаний, при котором, комбинируя атомы различных химических элементов, можно создать структурные формулы любого химического соединения. Возникновение структурной химии означало, что появилась возможность для целенаправленного качественного преобразования веществ, для создания схемы синтеза любого химического соединения, в том числе и ранее неизвестного.

Развитие этого направления в химии связано с теорией химического строения органических соединений русского химика Александра Михайловича Бутлерова. Появление этой теории позволило превратить химию из науки аналитической, занимающейся изучением состава готовых веществ, в науку преимущественно синтетическую, способную создавать новые вещества и новые материалы.

Эта теория наглядно демонстрирует валентность химических элементов как число единиц сродства, присущих атому -С: М; -О; Н. Комбинируя атомы различных химических элементов с их единицами сродства, можно создать структурные формулы любого химического соединения. А это означает, что химик в принципе может создавать план синтеза любого химического соединения - как уже известного, так и еще неизвестного, прогнозировать получение неизвестного соединения и проверить свой прогноз синтезом.

В результате у химиков появился уверенность в положительном исходе эксперимента в области органического синтеза. Сам термин «органический синтез» возник в 60 - 80е годы прошлого века. Он стал обозначать целую область науки, названную так в противоположность общему увлечению анализом природных веществ. Этот период в химии был назван триумфальным шествием органического синтеза. Химики гордо заявляли о своих ничем не сдерживаемых возможностях, обещая синтезировать из угля, воды и воздуха все самые сложные тела вплоть до белков, гормонов и алкалоидов. И действительность, казалось, подтвердила эти заявления: за вторую половину XIX века число изученных органических соединений за счет вновь синтезированных возросло с полумиллиона примерно до двух миллионов.

Но дело в том, что структурная химия ограничена рамками сведений только о молекулах вещества, находящегося в до реакционном состоянии. Этих сведений недостаточно для того, чтобы управлять процессами превращения этого вещества. Так, согласно структурным теориям, должны быть вполне осуществимы многие реакции, которые практически не идут. Большое количество реакций органического синтеза, основанных лишь на принципах структурной химии, имеют столь низкие выходы продукции и такие большие отходы в виде побочных продуктов, что не могут быть использованы в промышленности. К тому же такой синтез требовал в качестве исходного сырья дефицитных активных реагентов и сельскохозяйственной продукции, в том числе и пищевой, что крайне невыгодно в экономическом отношении.

Тем не менее, современная структурная химия достигла больших результатов: большая часть лекарственных препаратов - это продукты органического синтеза. Самым последним ее достижением является открытие совершенно нового класса металлоорганических соединений, которые за свою двухслойную структуру получили название «сэндвичевых соединений». Молекула этого вещества представляет собой две пластины из соединений водорода и углерода, между которыми находится атом какого либо металла. Исследования в области современной структурной химии идут по двум перспективным направлениям:  синтез кристаллов с максимальным приближением к идеальной решетке для получения материалов с высокими техническими показателями: максимальной прочностью, термической стойкостью, долговечностью в эксплуатации и др.:  создание кристаллов с заранее запрограммированными дефектами для производства материалов с заданными электрическими, магнитными и другими свойствами. Решение каждой проблемы имеет свои сложности. Так, в первом случае необходимо соблюдение таких условий выращивания кристаллов, которые исключали бы воздействие на процесс внешних факторов, в том числе и поля гравитации (земного притяжения). Поэтому такие кристаллы выращивают на орбитальных станциях в космосе. Решение второй проблемы затруднено тем, что наряду с запрограммированными дефектами практически всегда образуются и нежелательные.

Учение о химических процессах является следующим по сложности уровнем химических знаний. Способность к взаимодействию различных химических реагентов определяется кроме всего прочего и условием протекания химических реакций. Эти условия могут оказывать воздействие на характер и результат химических реакций. Наиболее зависимыми от условий протекания реакции оказываются соединения переменного состава с ослабленными связями между их компонентами. Именно на них направлено в первую очередь действие разных катализаторов, которые значительно ускоряют ход химических реакций. Одним из основоположников этого направления в химии стал русский химик Н.Н. Семенов - лауреат Нобелевской премии, основатель химической физики. В своей Нобелевской лекции 1965 г. он заявил, что химический процесс - то основное явление, которое отличает химию от физики, делает ее более сложной наукой. Химический процесс становится первой ступенью при восхождении от таких относительно простых физических объектов, как электрон, протон, атом, молекула, к живой системе, потому что любая клетка живого организма, по существу, представляет собой своеобразный сложный реактор. Это - мост от объектов физики к объектам биологии. Подавляющее большинство химических реакций находится во власти стихии. Они трудноконтролируемы: в одних случаях их просто не удается осуществить, хотя они в принципе осуществимы, в других - трудно остановить, например, горения и взрывы, в третьих случаях их трудно ввести в одно желаемое русло, так как они самопроизвольно создают десятки непредвиденных ответвлений с образованием сотен побочных продуктов. В самом общем виде методы управления химическими процессами можно подразделить на термодинамические и кинетические, а среди последних ведущую роль играют каталитические методы. Выделение химической термодинамики в самостоятельное направление учения о химических процессах обычно связывают с появлением в 1884 г. книги «Очерки по химической динамике» голландского химика Я. Вант Гоффа. В ней обоснованы законы, устанавливающие зависимость направления химической реакции от изменения температуры и теплового эффекта реакции. Тогда же ЛеШателье сформулировал свой «принцип подвижного равновесия», вооружив химиков методами смещения равновесия в сторону образования целевых продуктов. Основными рычагами управления реакцией выступают: температура, давление (если реакция происходит в газовой фазе) и концентрация реагирующих веществ (если реакция идет в жидкой фазе). Каждая химическая реакция в принципе обратима, но на практике равновесие смещается в ту или иную сторону, что зависит как от природы реагентов, так и от условий процесса. Есть реакции, которые не требуют особых средств управления: кислотноосновное взаимодействие (нейтрализация), реакции, сопровождающиеся удалением готовых продуктов или в виде газов, или в форме осадков. Но существует немало реакций, равновесие которых смещено влево, к исходным веществам. И чтобы их осуществить, требуются особые термодинамические рычаги - увеличение температуры, давления и концентрации реагируемых веществ.
Термодинамическое воздействие влияет преимущественно на направленность химических процессов, а не на их скорость. Управлением скоростью химических процессов занимается химическая кинетика, в которой изучается зависимость протекания химических процессов от различных структурнокинетических факторов: строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок, способов смешения реагентов, материала и конструкции реактора и т.п. Задача исследования химических реакций является исключительно сложной. Ведь при ее решении необходимо выяснить механизм взаимодействия не просто двух реагентов, а еще и «третьих тел», которых может быть несколько. В этом случае наиболее целесообразно поэтапное решение, при котором вначале выделяется наиболее сильное действие какогонибудь одного из «третьих тел», чаще всего катализатора. Здесь следует понять, что практически все химические реакции представляют собой отнюдь не простое взаимодействие исходных реагентов, а сложные цепи последовательных стадий, где реагенты взаимодействуют не только друг с другом, но и со стенками реактора, которые могут, как катализировать (ускорять), так и ингибировать (замедлять) процесс. Опыты показывают, что на интенсивность химических процессов оказывают влияние также случайные примеси. Вещества различной степени чистоты проявляют себя в одних случаях как более активные реагенты, в других - как инертные. Примеси могут оказывать как каталитическое, так и ингибиторное действие. Поэтому для управления химическим процессом в реагирующие вещества вносят те или иные добавки. Таким образом, влияние «третьих тел» на ход химических реакций может быть сведено к катализу, то есть положительному воздействию на химический процесс, и к ингибированию, сдерживающему процесс. Катализ в химии делает настоящие чудеса. Например, реакция синтеза аммиака. До 1913 г. она вообще не могла быть осуществлена. Только после того, как был найден катализатор, при высокой температуре и давлении эту реакцию удалось осуществить. Но она была очень трудной в технологическом исполнении и опасной. А сейчас открыты условия, позволяющие проводить ее при нормальном давлении и комнатной температуре с использованием металлоорганических катализаторов. Применение катализаторов послужило основанием коренной ломки всей химической промышленности. Благодаря им стало возможным ввести в действие в качестве сырья для органического синтеза парафины и циклопарафины, до сих пор считавшиеся «химическими мертвецами». Катализ находится в основании производства маргарина, многих пищевых продуктов, а также средств защиты растений. Почти вся промышленность основной химии (производство неорганических кислот, оснований и солей) и «тяжелого органического синтеза», включая получение горючесмазочных материалов, базируется на катализе. Последнее время тонкий органический синтез также становится все более каталитическим. 60 - 80 процентов всей химии основаны на каталитических процессах. Химики не без основания говорят, что некаталитических процессов вообще не существует, поскольку все они протекают в реакторах, материал стенок которых служит своеобразным катализатором. Но сам катализ долгое время оставался загадкой природы, вызывая к жизни самые разнообразные теории, как чисто химические, так и физические. Эти теории, даже будучи ошибочными, оказывались полезными хотя бы потому, что наталкивали исследователей на новые эксперименты. Ведь дело было в том, что для большинства промышленно важных химических процессов катализаторы подбирались путем бесчисленных проб и ошибок. Так, например, для вышеназванной реакции синтеза аммиака в 1913 - 1914 годах немецкие химики испробовали в качестве катализатора более 20 тысяч химических соединений, следуя периодической системе элементов и сочетая их самыми разными способами. На современном этапе своего развития учение о химических процессах занимается разработкой таких проблем, как химия плазмы, радиационная химия, химия высоких давлений и температур.  




Концепции геологии




15

Принцип возрастания энтропии

В определении «хаоса» понятие энтропии является основополагающим. Образно говоря, энтропия генерирует хаос. Из статистического выражения второго начала термодинамики следует, что с ростом энтропии расположение частиц (частей) системы становится все более и более хаотичным. Это широко известное положение стало уже философским. «Энтропия и беспорядок не только похожи, а есть одно и то же», - утверждает, например, исследователь Р. Е. Пайерлс. Э. Шредингер иллюстрирует это на примере плавления кристалла, в результате чего «изящные и устойчивые расположения атомов или молекул в кристаллической решетке превращаются в непрерывно меняющиеся случайные распределения», то есть в жидкость. Как известно, наиболее наглядно свойства энтропии проявляются в изолированных системах*, где она монотонно возрастает. Однако всё сказанное об энтропии имеет скорее философский смысл, чем естественнонаучный, так как, строго говоря, физическое значение энтропии до сих пор не определено. Слова Д. фон Неймана: «Никто не знает, что же такое энтропия» до сих пор не потеряли своей силы.

Понятие энтропии возникло в термодинамике в результате стремления унифицировать* элементарные выражения тепла и работы. Как известно, элементарная работа есть произведение потенциала - интенсивного фактора (силы, давления, химического потенциала и т. п.) на приращение координаты экстенсивного фактора (пути, объема, массы и т. п.). Иными словами, как потенциал, так и координата в выражении работы имеют вполне определенный физический смысл. Что же касается выражения

S=Q T

где Q - тепло, получаемое системой, Т - абсолютная температура, S - энтропия, то здесь определенный физический смысл имеют только приращение тепла и абсолютная температура.

Таким образом, стремление навязать природе удобную для математических операций форму (унифицировать форму выражения тепла с формой выражения работы) обернулось появлением функции с непонятным физическим смыслом. Она оказалась удобной для доказательства необратимости процессов, но неэффективной в практических приложениях.

В энциклопедическом курсе термодинамики К. А. Путилова по этому поводу говорится: «Теплота и работа являются неравноценными формами передачи энергии... Работа может быть непосредственно направлена на пополнение запаса любого вида энергии. Теплота же непосредственно, то есть без промежуточного преобразования в работу, может быть направлена на пополнение запаса только внутренней энергии тел». И далее: «Внутренняя энергия тела является единственной энергией тела, имеющей статистическую основу...».

Отсюда следует, что энтропия, как и внутренняя энергия, являются объектами изучения статистической физики. Но обе эти функции для реальных объектов в рамках статистической физики вычислены быть не могут. Не могут быть определены они и в эксперименте. В силу этого энтропия вычисляется в термодинамике через измеряемые величины - температуру и количество тепла.

Другая трудность связана с тем, что в термодинамике энтропия играет «двусмысленную» роль. Она растет при равновесном нагреве и убывает при равновесном остывании тела, сопутствуя изменению его внутренней энергии. Не случайно, поэтому она - единственная термодинамическая функция, имеющая одинаковую размерность с другой - теплоемкостью. В этих случаях изменения значения энтропии не связаны с изменением равновесия в системе - условия, характеризующего ее потенциальную работоспособность.

Обычно больший интерес, особенно в биологии, энтропия вызывает в качестве меры неравновесия. В этой роли она характеризует ту часть энергии, которая при наличии преобразующего механизма может произвести работу. Именно в этом смысле она интересует как теплотехников, так и биологов, так как характеризует возможность системы обеспечить за счет такой работы жизнедеятельность. Именно эта роль энтропии как характеристики состояния системы и положила, начиная со знаменитой речи Л. Больцмана, произнесенной им в 1886 г., начало поискам определения жизни как явления, способного уменьшать свою энтропию.

Реальные организмы хорошо справляются с этими двусмысленностями. В случае необходимости поддержания температурного гомеостаза многие из них, особенно высшие, обладают механизмами для повышения температуры (сопровождаемой соответственно ростом энтропии) и понижения ее (сопровождаемой убылью энтропии).

Однако и действия, способствующие повышению потенциальной работоспособности (сопровождающейся понижением энтропии, характеризующей в этом случае меру неравновесия), ограничены известными пределами. Так, накопление жира, обеспечивающего потенциальную работоспособность животного, при превышении определенного запаса может привести его к гибели, как вследствие снижения подвижности, так и вследствие внутренней патологии. Таким образом, организмы поддерживают оптимальное значение энтропии подобно тому, как они это делают с сотнями различных веществ с целью сохранения гомеостаза. Таким образом, энтропийные характеристики и в случаях, указывающих на неравновесность, не являются ни определяющими, ни специфическими для организмов.

До сих пор рассматривался физический смысл энтропии в ее классическом термодинамическом выражении. Рассмотрим теперь смысл этого понятия в статистической трактовке второго закона термодинамики.

Наиболее наглядно этот смысл проявляется в фазовых переходах первого рода, например, плавлении. В этом процессе тепло, полученное системой при постоянной температуре фазового перехода, связано с энтропией простейшей зависимостью. Поскольку кинетическая энергия молекул, находящаяся в прямой зависимости от Т (температуры), практически не изменяется, то, очевидно, что поступающее тепло расходуется на ослабление связей между частицами, образующими кристаллическую решетку, то есть на увеличение потенциальной энергии связи молекул.

Этот случай позволяет увидеть в чистом виде одну из составляющих физического смысла энтропии, обычно маскируемую одновременным изменением кинетической и потенциальной энергий, и выявить, что энтропия - это функция, отражающая и величину потенциальной энергии связей микрочастиц. Ее монотонный рост в прямой зависимости от температуры нарушается фазовыми переходами, когда потенциальная энергия связей изменяется скачком. Особенно большим этот скачок может быть при переходе в газовую фазу, когда фактически происходит разрыв связей между молекулами вещества. При этом расстояние между ними может увеличиваться на несколько порядков (у воды объем при переходе в пар возрастает примерно в 1700 раз) и дальнейший рост потенциальной энергии частиц становится незначительным. И лишь тогда приложение статистического выражения второго закона становится практически адекватным.

Существование организмов определяется, в первую очередь, сохранением их структуры, которая, в свою очередь, зависит от прочности связей слагающих ее частей, характеризуемой их потенциальной энергией. Отсюда очевидно, что статистическое выражение второго закона термодинамики в общем случае непригодно для выражения энтропии и, в частности, для исследования специфики жизни. Это связано с тем, что оно выведено на основании идеальной модели, в которой все взаимодействия частиц сводятся к упругим соударениям друг с другом и со стенками сосуда, а все остальные взаимодействия игнорируются.

Работа, производимая системой, приводит к упорядоченному движению частиц. Если система совершает работу над окружающей средой, она вызывает упорядоченное движение. При нагреве системы частицы движутся неупорядоченно. Когда теплота переходит к окружающей среде, в ней возникает неупорядоченное движение. В термодинамических системах упорядоченность движения и конфигурация расположения частиц играют существенную роль. Рассеяние энергии следует понимать не только как пространственное рассеяние по атомам Вселенной, но и как разрушение упорядоченности.

Энергия никогда не может сама по себе локализоваться, собравшись в избытке в какой-то части Вселенной, ещё менее вероятна упорядоченная локализация. Вне зависимости от того, каким способом рассеивается энергия - путём перехода от одного объекта к другому, посредством распространения и перемешивания носителей энергии или вследствие утраты упорядоченности движения внутри объекта - её рассеяние всегда соответствует увеличению энтропии. В то же время хаос может выступать как сверхсложная упорядоченность, а среда содержит в себе всё необходимое для рождения упорядоченных структур.