Естествознание прошло три стадии и вступило в четвертую. 1 Стадия древнегреческой натурфилософии

Вид материалаДокументы
Структурные уровни организации материи
Геоцентрический мир
Негеоцентрический мир
Корпускулярная и континуальная концепции описания природы
Фундаментальные взаимодействия
Электродинамика Д. Максвелла
Понятие струны становится синонимом понятия частицы.
Пространство, время, принципы относительности
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   12

Физические концепции мира

5

Структурные уровни организации материи

Структурные уровни организации материи

Доступная нам природа условно разделяется на следующие уровни:

микромир (элементарные частицы, ядра атомов, комплексы ядер, атомы, молекулы),

макромир (комплексы молекул; микрофизические комплексы: кристаллы, клетка; организмы; сообщества организмов: экосистемы, биосфера)

 Мегамир (планеты, звездно-планетные комплексы, галактики, Метагалактика).

На основании этих представлений выделяют:

1. Геоцентрический мир - реальный мир на уровне макромира. Явления геоцентрического мира описываются евклидовым пространством, ньютоновым (абсолютным, одномерным) временем и лейбницевым качеством, где целое всегда больше части.

2. Негеоцентрический мир - микромир и мегамир, описываемые неевклидовым пространством (геометрии Лобачевского-Римана), неньютоновым временем, нелейбницевым качеством (теория относительности, квантовая механика).

Структура микромира. В настоящее время в микромире выделяется четыре уровня вещества:

1. молекулярный;

2. атомный;

3 нуклонный (уровень атомного ядра);

4. кварковый.

Уже обсуждается возможный облик пятого уровня вещества - суперструнного. Каждый вновь открываемый уровень качественно отличается от ранее известных, его характеризуют другие свойства соответствующих частиц. Поиск самых простых частиц привел исследователей к пониманию того, что абсолютной элементарности не существует, что частица любого уровня сложна в своей сущности и проявлениях. Условно принято считать элементарными те частицы, у которых сегодня не обнаружена внутренняя структура, а их размеры недоступны измерению, т. е. меньше 10-15 см.

Исходя из значения спина (внутренней степени свободы движения частицы), все элементарные частицы можно разделить на две группы:

 частицы с целочисленным спином (0, 1, 2 ...) называются бозонами в честь известного физика Бозе. На них запрет Паули не распространяется, и они могут находиться вместе в любом количестве. Поля бозонов переходят в классические поля. Так, одна из бозонных частиц, - фотон может стать классическим электромагнитным полем, излучающим свет, радиоволны. В макромире бозоны проявляют себя обычно на уровне полей.

 частицы с полуцелым значением спина (1/2, 3/2 ...) называются фермионами в честь великого физика Ферми. Они могут находиться вместе только при условии, что их физические состояния и параметры не одинаковы. Этот закон квантовой механики получил название запрета Паули. Поля фермионов всегда остаются квантованными и легко переходят в частицы. В макромире фермионы проявляются на уровне вещества. В свою очередь, фермионы разделяются на лептоны и кварки.

Класс лептонов включает 6 частиц и 6 античастиц:

 электрон,  мюон, тау-лептон,  три вида нейтрино.

 Лептоны не участвуют в образовании ядерных частиц - нуклонов и в сильных взаимодействиях.

Класс кварков также содержит 6 частиц и столько же античастиц. Каждый тип кварков физики условно назвали ароматом.

Аромат обозначает квантовое число, приписываемое частице данного типа. Кварки - электрически заряженные частицы, имеющие дробные значения по отношению к заряду электрона, принятого за 1, и равны 1/3, 2/3 с положительным или отрицательным знаком.

Кварки и антикварки группируются по 2 или по 3 частицы и образуют составные частицы адроны. Отдельно от адронов кварки существовать не могут. Адроны подразделяются на 3 группы:

1. Барионы: протон и нейтрон, фундаментальная основа атомных ядер.

2. Мезоны - частицы, получаемые путем сочетания кварка и антикварка.

3. Антивещество - содержит частицы, образуемые сочетанием трех антикварков. Дальнейшие исследования показали, что кварки одного аромата не идентичны и различаются характером взаимодействием друг с другом. Поэтому для их описания ввели еще одно квантовое число, которое условно назвали цветом. Эксперименты на ускорителях подтвердили, что разделение кварков одного аромата на три «цвета» - красный, зеленый и синий - отражает действительность.

6

Корпускулярная и континуальная концепции описания природы

Основными формами материи являются вещество и поле.

Вещество - это различные частицы и тела, имеющие массу покоя.

Поле - это специфическая форма распределения материи в пространстве и времени. Поля и их кванты не имеют массы покоя, хотя обладают энергией и импульсом. Вещества и поля тесно взаимосвязаны между собой. Если рассматривать структуру вещества, то во всех системах внутреннее пространство будет заполнено полями, а на долю частиц приходится ничтожная часть общего объема системы (10-36-10-40 объема). Таким образом, поля входят в структуру вещества. Это доказывает единство непрерывности (континуальности) и прерывистости (дискретности) материи.

Частицы обладают относительной дискретностью и локализованностью в пространстве, тогда как поля непрерывно распределены в нем. При этом поля не являются абсолютно континуальными средами. При излучении и поглощении они ведут себя дискретно, в виде квантов. Кванты полей взаимодействуют с частицами вещества как дискретные образования. Частицы неотделимы от полей, и не существует резкой границы, где кончается частица и начинается ее внешнее поле.

Единство непрерывного и прерывистого в структуре материи проявляется в единстве корпускулярных и волновых свойств всех частиц вещества. Обладая относительной дискретностью, объекты микромира при взаимодействиях и движении могут проявлять волновые свойства: способность к дифракции, интерференции, характеризуются длиной волны (l), обратно пропорциональной их массе (m) и скорости (v).

 

 где h - постоянная Планка;

 Это соотношение устанавливает взаимосвязь корпускулярного параметра частицы (массы) с волновым (длина волны).

Поле и вещество обладают определенными физическими параметрами. Движущееся поле (волна) описывается длиной волны, фазой, амплитудой и их изменениями в пространстве и времени. Частицы характеризуются массой покоя, зарядом, временем жизни, квантовыми числами, спином (моментом количества движения).

Вещество может находиться в четырех состояниях: твердом, жидком, газообразном и плазменном (сильно ионизированного газа). Разновидностями плазмы являются: пламя, взрыв, электрические заряды (искровой, тлеющий, дуговой, коронный, шаровой).

Поля бывают: электромагнитное, гравитационное, сильное и слабое (связывают частицы в ядрах атомов). В настоящее время ряд ученых признает существование биополя, но пока его реальность недостаточно подтверждена экспериментально.

Способом существования материи является движение.

Движение - это всякое изменение вообще, а именно в пространстве и времени. Материя и движение сущностно едины, их нельзя разделить. Это доказывает формула Эйнштейна:

 

В 1924 Луи де Бройль предположил: не только луч света, но и все тела в природе должны обладать и волновыми и корпускулярными свойствами одновременно. Поэтому, кроме световых волн и частиц материи, в природе должны реально существовать и корпускулы света, и волны материи. Конкретно, он предложил с каждым микрообъектом связывать, с одной стороны, корпускулярные характеристики (энергию Е и импульс р.), а с другой стороны, волновые характеристики (частоту ν и длину волны λ).

Свет имеет два типа свойств, которые кажутся прямо противоположными: волновые свойства и свойства частиц. Довольно часто два типа свойств приводят к одинаковым результатам, но имеется и существенная разница. Её можно представить следующим образом:

Частицы:
  • Переносят свою энергию (кинетическую) и импульс компактным пакетом.
  • При наложении двух потоков их вклады прибавляются один к другому.
  • Отбрасывают резкую тень
  • Либо проходят через дырку в стенке, либо не проходят, частица не может частично пройти через одну, а частично через другую дырку в одной и той же стенке.

Волны:
  • Переносят свою энергию, распределённую по всему «фронту волны».
  • При наложении двух потоков (из одного источника) интерферируют
  • Огибают препятствия.
  • Могут переходить с одной стороны стенки на другую через любое количество дырок.
  • Поперечные волны могут обладать поляризацией.

Идею дуализма «волна-частица» трудно воспринять для света, но ещё труднее для атомов, электронов и всех частиц. Свет, проходящий через пару щелей в стенке, образует на удалённом экране интерференционные полосы Юнга. Но его энергия, очевидно, переносится пулеподобными квантами, большая часть которых попадает на яркие и только малая часть квантов - на тёмные полосыi.

Первоначально идея дуализма была применена к электромагнитному излучению. Еще в 1917 г. Эйнштейн предложил рассматривать введенные Планком кванты излучения как своеобразные частицы, обладающие не только определенной энергией, но и определенным импульсом. Позднее (с 1923 г.) эти частицы стали называть фотонами.

Весьма ярко корпускулярные свойства излучения проявились в эффекте Комптона (1923 г.), когда пучок рентгеновских лучей рассеивается на атомах вещества и ведет себя как поток фотонов, которые испытывают упругие столкновения с электронами атомов, и выполняют закон сохранения энергии и импульса для сталкивающихся частиц. При этом достигалось не только качественное, но и количественное согласие с экспериментом.

Гипотеза де Бройля получила в 1927 г. подтверждение: была обнаружена дифракция электронов. Исследуя прохождение электронов сквозь тонкие пластинки, на экране обнаружили дифракционные кольца, что доказывает волновые свойства электронов.

7

Фундаментальные взаимодействия

Физическое взаимодействие

 Взаимодействие представляет собой развертывающийся во времени и пространстве процесс воздействия одних объектов на другие путем обмена материей и движением. Взаимодействие выступает как движение материи, а любое движение включает в себя различные виды взаимодействия. Не существует движения, в котором не было бы взаимодействия, так и не существует взаимодействия без движения. По современным представлениям взаимодействие любого типа должно иметь своего физического агента-переносчика.

В настоящее время различают 45 фундаментальных взаимодействия:

Гравитационное является самым слабым из взаимодействий, оно описывается законом тяготения И. Ньютона. В макромире оно тем сильнее, чем больше массы взаимодействующих тел. В микромире гравитационное взаимодействие теряется на фоне более мощных ядерных и электромагнитных сил: сила гравитационного притяжения электронов в 1040 раз меньше, чем их сила электростатического отталкивания.

Гравитационные взаимодействия обусловливают образование всех космических систем, а также концентрацию рассеянной материи звезд и галактик. Считается, что скорость распространения гравитационных волн равна скорости света в вакууме, но они еще достоверно не зарегистрированы приборами.

С точки зрения квантовой механики предполагается, что поле тяготения создается частицей гравитоном, хотя экспериментально она еще не найдена. Считается, что силы тяготения являются результатом постоянного обмена между телами гравитонами, которые переносят энергию

Электромагнитное взаимодействие обладает универсальным характером и проявляется в притяжении разноименных зарядов или отталкиванием одноименных.

Благодаря электромагнитному взаимодействию возникают атомы, молекулы и макроскопические тела. Все химические реакции - это проявление электромагнитных взаимодействий, которые приводят к перераспределению химических связей между атомами и молекулами.

Электричество и магнетизм - это силы одного и того же феномена. Электродинамика Д. Максвелла является законченной классической теорией электромагнетизма, сохраняющей свое значение и в наши дни.

В современной физике создана более совершенная и точная квантовая электродинамика, которая утверждает, что заряд создает поле, квантом которого является безмассовая частица фотон.

Электрический заряд проявляется в двух разновидностях: заряд электрона назван отрицательным, а заряд, которым обладают протон и позитрон - положительным. Взаимодействие положительных и отрицательных зарядов обеспечивается обменом фотонов. Во всех электромагнитных процессах выполняется закон сохранения заряда, импульса и энергии.

Слабое взаимодействие - это фундаментальное физическое взаимодействие, существующее только в микромире. Оно способствует превращению одних частиц (фермионов) в другие. Примером такого взаимодействия является b-распад. В ходе этого процесса свободный нейтрон в среднем за 15 минут распадается на протон, электрон и антинейтрино.

 n0 ® p+ + e- + n-

 Распад вызван превращением внутри нейтрона кварка аромата d в кварк аромата u. Слабым зарядом обладают некоторые элементарные частицы из класса лептонов и кварков. Он образует три разновидности поля с обменными частицами (бозонами), имеющими значительную массу. Радиус его действия очень мал - 10-15 см.

В настоящее время предполагается, что существует единый фундаментальный заряд, определяющий одновременно электрослабое взаимодействие.

Сильное взаимодействие соединяет элементарные частицы - кварки и антикварки в адроны. Теория сильных взаимодействий находится в стадии становления. Исходным положением этой теории является существование трех условных типов цветовых зарядов кварков: красного, синего и зеленого, которые и определяют сильное взаимодействие.

Цветовые заряды кварков и антикварков создают 8 типов полей, переносчиками (квантами) которых являются 8 типов цветовых бозонов, названных глюонами. Глюоны, как фотоны и гравитоны, не имеют массы, но имеют цветовые заряды и обладают ограниченным радиусом действия, равным 10-13 см. На очень близких расстояниях кварки перестают влиять друг на друга, но с увеличением расстояния между кварками сила взаимодействия нарастает. Для разделения двух частиц с цветовыми зарядами понадобилась бы бесконечно большая энергия.

До открытия кварков и их цветового взаимодействия фундаментальным считалось ядерное взаимодействие, объединяющее протоны и нейтроны (барионы) в ядрах атомов. С открытием кваркового уровня вещества под сильным взаимодействием стали понимать цветовые взаимодействия между кварками. Таким образом, ядерные силы - это отголоски цветовых сил.

В настоящее время физики пытаются выявить универсальные механизмы всех фундаментальных физических взаимодействий. Объединение электромагнитного и слабого взаимодействия в единое элетрослабое взаимодействие стало первым успехом на этом пути. Существуют попытки создания теории Большого объединения на основе объединения электромагнитного, слабого и сильного взаимодействий. Еще более грандиозна идея объединения всех типов фундаментального взаимодействия (гравитационного, электромагнитного, слабого, сильного) в теорию Суперобъединения.

Физики считают, что могут создать эту теорию на основе теории суперструн. Теория суперструн основана на предположении, что существуют некие протяженные объекты - струны. Это пространственно одномерные отрезки, размером 10-33 см, имеющие 6 дополнительных пространственных измерений, которые в отличие от обычных 4-х измерений, замкнуты и свернуты в точки, не распространяясь на область макромира.

Понятие струны становится синонимом понятия частицы. Все частицы являются возбужденным состоянием струн. Различная степень возбуждения («звучания») струн определяет различные свойства элементарных частиц.

Теория суперструн предполагает некоторые интересные следствия:

 струны могут порождать гипотетические элементарные частицы тахионы, движущиеся со скоростью, большей скорости света.

возможность существования теневого мира, как объяснение факта, открытого астрономами, что галактики содержат массу невидимого вещества, в десятки раз превосходящую массу самих галактик.

8

Пространство, время, принципы относительности