Инженерно-физический метод синтеза технических решений преобразователей энергии

Вид материалаАвтореферат
Содержание работы
Вепольный анализ
Комбинаторный метод
Энерго-информационный метод.
Функционально-физический метод
Метод поискового конструирования
В третьих
Подобный материал:
1   2   3   4   5

Содержание работы


Во введении обоснована актуальность работы, сформулированы основные цели и задачи исследований, раскрыты научная новизна и практическая ценность полученных результатов, приведены результаты реализации и апробации работы.

В первой главе проводится анализ задач концептуального проектирования технических систем. Их решение в подавляющем большинстве подходов основано на использовании графовых моделей, которые отражают физические процессы, протекающие при функционировании этих систем. Рассмотрены известные концепции и технологии разработки технических решений на основе моделей ФПД, а также их использование в САПР.

Вепольный анализ в рамках теории решения изобретательских задач, является средством для соединения описания физических явлений с инженерными задачами. В качестве базовых используются понятия «вещество», «поле» и «взаимодействие». Модель ФПД представляет собой граф. Его вершины обозначают вещественные объекты и поля, а дуги – взаимодействия, которые осуществляются между веществом посредством полей.

Комбинаторный метод поиска принципов действия технических систем (по Глазунову) основан на использовании массива физических эффектов, который представляется в виде графа. Каждая вершина представляет собой причину или следствие какого-либо эффекта, дуги – условия их реализации. Для решения задачи синтеза ФПД необходимо выделить две вершины графа ФЭ, одна из которых соответствует среде, а другая – цели функционирования проектируемой системы. Искомые принципы действия состоят из эффектов, которые образуют цепи, соединяющую первую вершины со второй.

Энерго-информационный метод. В его основе лежит энерго-информационная модель цепей. Процессы различной физической природы представляются в виде совокупности элементарных преобразований одной физической величины в другую. Такой подход позволяет формализовать описание ФПД технического устройства в виде параметрической структурной схемы. Каждое элементарное звено такой схемы отражает одно преобразование. Техническое устройство представляется в статике совокупностью звеньев, соединенных между собой в определенном порядке.

Функционально-физический метод поискового конструирования. Концепция метода основана на предположении Р. Колера, что любые машины, аппараты и приборы характеризуются наличием в них организованных потоков энергии, вещества и информации (сигналов). Процессы изменения свойств и состояний этих потоков в технической системе можно свести к конечному числу элементарных функций и основных операций, которые реализуются посредством определенных физических, химических и биологических эффектов. Модель ФПД по Р. Коллеру представляет собой ориентированный граф, дугами которого являются физические величины, а вершинами – материальные объекты, в которых осуществляется соответствующее преобразование этих величин.

Метод поискового конструирования является дальнейшим развитием функционально-физического подхода для его применения при автоматизированном конструировании технических систем. В работах проф. А. И. Половинкина и его коллег вводится ряд базовых понятий, которые можно рассматривать как методологическую основу новой теории синтеза технических систем на начальных стадиях проектирования. Поиск ФПД основан на соответствии между физической операцией, которую требуется реализовать, и физическом эффекте, с помощью которого можно осуществить такую реализацию.

Перечисленные методы и положенные в их основу модели ФПД можно рассматривать как парадигмы (концепции, системы взглядов), получившие развитие во многих методиках проектирования ТС самых разных классов. Их анализ позволяет сделать следующие выводы:

1) известные модели ФПД требуют доработки для описания процессов, реализуемых в ПЭ, многие из которых характеризуются сложной последовательностью взаимодействий в пространстве и во времени, а также высокими показателями значений выходной мощности;

2) концепция модели ФПД для рассматриваемого класса систем должна опираться на понятийный аппарат феноменологических разделов физики, в которых с помощью единого математического аппарата описывается большинство физических процессов, используемых в современных ПЭ;

3) методология разрабатываемого подхода требует уточнения
и согласования с традиционными физическими представлениями
о материи, энергии, веществе, с которыми инженеры знакомятся
в курсах физики, теоретической механики, технической термодинамики, теплотехники и др.;

Во второй главе формально выделен класс ПЭ из морфологического множества существующих технических систем. Для этого был проведен анализ модели технического процесса из немецкого технического стандарта DIN 66201, а также таких понятий как техническая функция, физическая операция, элементарная функция, операция Колера, определение которых дается в работах А. И. Половинкина и его коллег.

Анализ показал, что независимо от вербальной формулировки функции устройства, его принадлежность к классу ПЭ можно определить по реализуемой в устройстве физической операции – «преобразование». При этом в качестве входного и выходного факторов должны использоваться обобщенные силы и обобщенные координаты (экстенсоры), входящие в единое аналитическое выражение для обобщенной работы

dQ = P dE , (1)

где P – обобщенная сила, фактор интенсивности или интенсиал; E – обобщенная координата, фактор экстенсивности или экстенсор.

Идентификация конкретного устройства на принадлежность к классу ПЭ состоит в проверке условия сопряжения входного и выходного факторов с различными видами энергии.

Таким образом, к этому классу относятся двигатели внутреннего и внешнего сгорания, тепловые и холодильные машины, МГД-генераторы, лазерные установки, газотурбинные, паросиловые и парогазовые установки, стрелковые и артиллеристские системы и многие другие ТС.

В рамках исследования был проведен анализ взятой за прототип модели ФПД функционально-физического метода, основанной на понятии «физический эффект». Анализ показал, что для описания процессов взаимного преобразования энергии данная модель требует существенной доработки. В ней не заложена, например, возможность описания физических явлений, когда преобразование энергии происходит в условиях круговых процессов. Поэтому в модели ФПД преобразователей энергии должны быть учтены следующие обстоятельства:

уточнена семантическая нагрузка вершин и дуг графа ФПД;

отражены перемещения рабочего тела внутри устройства (в пространстве);

предусмотрена возможность указания очередности взаимодействий и перемещений рабочего тела (во времени);

отражена иерархия строения, а также особенности конструктивной организации ПЭ.

В этом причина того, что модель функционально-физического метода «работает» только для ограниченного класса ТС – там, где временными характеристиками процессов в первом приближении можно пренебречь и рабочее тело не перемещается в течение цикла и не заменяется новым.

Наиболее перспективным путем для решения поставленной задачи является путь, лежащий через использование понятийного аппарата феноменологической термодинамики. Это обусловлено тремя причинами.

Во-первых, термодинамика охватывает всю совокупность явлений природы, что сделало ее аппарат предельно четким и универсальным и, таким образом, открывающим возможности использовать его для описания различных принципов действия.

Во-вторых, на базе технической термодинамики строится описание работы большинства ПЭ, которые известны в настоящее время. Это обусловливает привычность ее терминологии для специалистов, проектирующих данные устройства, и облегчает им восприятие модели ФПД.

В третьих, термодинамика допускает подмену сложного реального явления неким условным, элементарным, что облегчает процесс формализации описания ФПД.

В данном методе используется модель ФПД, состоящая из трех компонентов

<L, M, N>, (2)

где L – граф ФПД; M – циклограмма периодических взаимодействий и перемещений рабочего тела ПЭ; N – множество описаний вершин и дуг графа ФПД.

Первым компонентом модели – графом отражаются физические процессы, осуществляемые в ПЭ. Его вершины обозначают места, так называемые характерные точки, где рабочее тело ПЭ испытывает взаимодействия, для которых в термодинамике дается единая формула аналитического выражения обобщенной работы (1).

Семантика дуг определяется следующими соображениями. Любые взаимодействия рабочего тела всегда связаны с изменением экстенсора E, то есть условно сопоставляются с процессом переноса через контрольную поверхность термодинамической системы определенного количества dE. Для каждого взаимодействия существует характерный параметр E, который однозначно с качественной и количественной стороны определяет данное взаимодействие.

Таким образом, взаимодействия рабочего тела ПЭ представляются на графе ФПД дугами с обозначением экстенсоров, сопряженными с данными взаимодействиями. Эти дуги являются инцидентными вершинам – характерным точкам. Их обозначения на графе и связанные с ними параметры приведены в таблице 1.

Кроме того, в процессе функционирования вещество рабочего тела ПЭ может перемещаться внутри устройства, что обусловливает необходимость введения дуг второго типа – маршрутных, связывающих характерные точки.

Таблица 1