Добронравова И. С. Синергетика: становление нелинейного мышления. Введение
Вид материала | Документы |
- Программа спецкурса: «синергетика и экономика», 107.06kb.
- Концепция самоорганизации. Синергетика. Синергетика это новое мировоззрение, отличное, 272.94kb.
- 12. Основные подходы к пониманию и исследованию мышления в психологии. Характеристика, 132.4kb.
- Текст взят с психологического сайта, 9752.59kb.
- Литература Алефиренко Н. Ф. Поэтическая энергия слова. Синергетика языка, сознания, 115.43kb.
- План истоки синергетики Сущность синергетики Тепловая конвекция как прототип самоорганизация, 140.16kb.
- Программа по курсу: введение в искусственный интеллект (базовый) по направлению: 511600, 68.26kb.
- Актуальность темы исследования, 1912.83kb.
- Задачи: провести диагностическое исследование уровня развития творческого мышления, 149.7kb.
- Экономическая синергетика: ответы на вызовы и угрозы XXI века, 5079.48kb.
Интертеоретический анализ современной революции в естествознании, проведенный нами в первой главе, показал, что главное содержание революционных изменений в области физики состоит в появлении физических исследовательских программ, направленных на отражение процессов становления сложных систем с более высокой степенью упорядоченности, чем исходная. Напомним что речь идет о самопроизвольных необратимых процессах самоорганизации.
Мы уже упоминали о том, что переход физики к теоретическому описанию процессов становления породил многие методологические проблемы: и связанные с теоретической реконструкцией самоорганизации (что для физики внове), и касающиеся соотношения этого нового знания с обширным массивом познавательных результатов традиционной «физики существующего». На наш взгляд, прояснению смысла этих методологических проблем и исследованию возможных путей их решения будет способствовать категориальный анализ теоретических моделей самоорганизации. Выбор в арсенале философских средств анализа естественнонаучного знания именно категориальных форм его осмысления связан со спецификой нынешнего этапа в развитии некоторых областей точного естествознания. Дело в том, что категории мышления являются граничными определителями смысла. Между тем формулировка многих проблем, например в современной космологии, обнаруживает как раз приближение к границам осмысленности. Предельными по сути в этом смысле являются такие вопросы: что было до начала времени? каковы условия возникновения материи из ничего? что было, когда ничего не было? И хотя в формулировках такого рода присутствует, конечно, доля щегольства, более адекватными формулировками космологи по сути дела не располагают [59, 147—214]. Характерно, что не только в применении к столь экстремальным и глобальным обстоятельствам, как рождение Вселен-
54
ной, обнаруживается ограниченность традиционного понимания используемых физикой категориальных средств. Самоорганизация диссипативных структур в макроскопических масштабах и обыденных ситуациях (скажем, образование ячеек Бенара в слое масла на раскаленной сковороде) также оценивается физиками как «поразительный пример, демонстрирующий способность неравновесности служить источником упорядоченности» [47, 13]. Такая оценка связана с неприменимостью к образованию диссипативных структур классического критерия упорядоченности Больцмана, ассоциирующего упорядоченность с устойчивостью равновесных структур типа кристалла.
Оба эти примера показывают ограниченность актуально использовавшихся традиционной физикой методологических средств для осмысления неклассических ситуаций, отражаемых современными физическими концепциями. Речь идет о необходимости расширения философских оснований физического знания, прежде всего категориальных форм его осмысления. Такое расширение может мыслиться как развитие категориальных структур, эксплицируемых в понятийном аппарате теорий; связанное с этим обстоятельством расширение содержания понятий, сопоставляемых с соответствующими категориями; привлечение к осмыслению познавательных результатов ранее не используемых в этой области знания категорий.
Поскольку в поле зрения теоретического описания оказывается становление нового, на наш взгляд, открывается возможность использования потенциала диалектики как идеальной модели теоретического воспроизведения процессов развития. Преимущество подхода с этих позиций состоит в том, что можно воспользоваться систематизированными группами категорий, выработанными мировой философской мыслью при отражении процессов развития человеческого познания и общественной жизни. Степень адекватности этих категориальных систем понятийным структурам физических теорий будет свидетельствовать об уровне отражения последними процессов развития, о перспективах развития как физического, так и философского знания. То обстоятельство, что речь идет о теоретическом уровне отражения процессов становления, побуждает нас обратиться к категориям сферы сущности. При этом логично прежде всего рассмотреть экспликацию категорий формообразования в понятийном аппарате теорий самоорганизации. Во-первых, все эти теории касаются формирования определенных структур, что определяет уместность обращения к категориальным средствам отра-
55
жения именно формообразования. Во-вторых, категориальные структуры детерминации касаются более глубокого уровня познания сущности процессов развития, и к ним имеет смысл обратиться позже.
Существенные отношения формообразования, диалектика категорий формы и содержания раскрываются через систему категорий: «элемент» и «структура», «целое» и «часть», «внутреннее» и «внешнее». Системная связь категорий призвана воспроизвести объективный ход развития предмета и процесс познания его сущности. Охарактеризуем вкратце эту связь с точки зрения диалектики [33].
Проблема отношения формы и содержания исторически возникла в рамках решения фундаментальной мировоззренческой проблемы: как возможны постоянство и повторяемость явлений при их непрерывном изменении? До Гегеля эта проблема рассматривалась в категориях «форма» и «материя». Гегель отверг идею неизменности материального субстрата изменений и выдвинул понятие «содержание», воплощающее единство формы и материи. Он писал: «Содержание... определено в себе... как принявшая форму материя» [23,84].
Материалистически переосмысливая гегелевские идеи, К. Маркс углубил различие содержания и субстрата: содержание — это субстрат в единстве с его формой. Поэтому обнаружение материального субстрата — лишь ступень в познании содержания. Содержание — реальный процесс развертывания основания предмета, т. е. его становление. Тогда форма оказывается становящейся и развивающейся структурой (складываются устойчивые связи элементов содержания). Здесь содержание определяет форму. Форма выступает как результат самоформирования предмета, она не привносится извне. Категории «элемент» и «структура», «часть» и «целое», «внутреннее» и «внешнее» конкретизируют диалектику содержания и формы в развитии предмета. Источником развития служит противоречие, заключенное в основании как начале развития. В соответствии с законом единства и борьбы противоположностей происходит раздвоение единого, возникновение существенных различий — дифференциация. Через механизм дифференциации основание переходит в содержание как совокупность элементов. Дифференциация элементов с необходимостью дополняется интеграцией их в систему за счет возникновения устойчивых связей между элементами. Таким образом, создается оформление содержания, возникает устойчивая структура.
56
Генетическое выведение элементов из основания, действие интеграционных процессов всякий раз происходят согласно логике развертывания конкретного основания определенного предмета. Так, становление Вселенной в соответствии с современными космологическими моделями, основанными на унитарных калибровочных теориях, включает в себя в любом из «сценариев» последователлное раздвоение единого.
Из исходного суперсимметричного состояния в результате спонтанного нарушения симметрии выделяется гравитационное и объединенное взаимодействие; на более поздних этапах расширения пространства Вселенной (через 10-43 с после Большого Взрыва) и соответствующего понижения температуры до 1027 К из объединенного взаимодействия выделяются сильное и электрослабое взаимодействия, и, наконец, электрослабое взаимодействие разделяется на электромагнитное и слабое. В результате каждого из этих качественных скачков происходит дифференциация элементарных частиц. Так, при разделении электрослабого и сильного взаимодействий нарушается симметрия между частицами, способными вступать в такие взаимодействия: барионами (тяжелыми) и лептонами (легкими) частицами. Барионы уже не могут превращаться в лептоны (начинает действовать закон сохранения числа барионов), в результате возникают устойчивые элементы (например, протоны), являющиеся основой всех более сложных структур, образовавшихся впоследствии на их основе, в том числе и нас с вами, читатель. Многообразные элементарные частицы, появившиеся в результате этой дифференциации, различаются прежде всего своей способностью вступать в различные типы физических взаимодействий. Таким образом, дифференциация естественно дополняется интеграцией (возникновением устойчивых связей, в результате чего образуются ядра химических элементов, атомы, молекулы и т. д.).
Как видно из этой беглой иллюстрации, процессы формообразования при становлении Вселенной естественным образом выражаются через такие категории, как «элемент» и «структура». Но это еще бедные, абстрактные определения по отношению к категориям «часть» и «целое». Действительно, по отношению к системе как целому элементы или их совокупности выполняют определенные функции, обеспечивающие существование этого целого, т. е. выступают как его части.
К. Маркс писал: «Сама... органическая система как совокупное целое имеет свои предпосылки, и ее развитие
57
в направлении целостности состоит именно в том, чтобы подчинить себе все элементы общества или создать из него недостающие ей органы. Таким путем система в ходе исторического развития превращается в целостность. Становление системы такой целостностью образует момент ее, системы, процесса, ее развития» [1, 229]. Описанное Марксом формирование органическим целым собственных частей путем подчинения элементов невольно ассоциируется с принципом подчинения — основополагающим принципом синергетики. Он действует при образовании диссипативных структур в активных средах не только биологической, но и химической, и физической природы. При образовании автоволн наблюдаются эффекты синхронизации: элементы среды совершают колебания с частотой, навязываемой наиболее быстрым источником. Тот же принцип подчинения действует при образовании тепловых структур в плазме: «Один из процессов развивается быстрее всех остальных, которые по сравнению с ним как бы «замирают». За время, характерное для этого процесса, остальные величины не успевают существенно измениться» [44, 16].
Следует подчеркнуть, что в системах, описываемых синергетикой, элементы, организуемые в части формирующейся целостности, не образуются заново в ходе дифференциации, как это предусматривается классической схемой диалектики, и что реализуется, как мы видели, в космологических моделях становления Вселенной. .Эти элементы преднайдены для новой структуры как элементы исходной среды; более того, условием образования новой целостности оказываются те же взаимодействия между элементами, которые существовали и в условиях равновесия. Однако «вдали от равновесия между химической кинетикой и пространственно-временной структурой реагирующих систем существует неожиданная связь. Правда, взаимодействия, определяющие значения констант скоростей и коэффициентов переноса, обусловлены короткодействующими силами (силами валентности, водородными связями и силами Ван-дер-Ваальса). Но решения соответствующих уравнений зависят, кроме того, от глобальных характеристик. Эта зависимость (весьма тривиальная на термодинамической ветви вблизи равновесия) становится решающей в химических системах, действующих в условиях, далеких от равновесия. Например, для возникновения диссипативных структур обычно требуется, чтобы размеры системы превышали некоторое критическое значение— сложную функцию параметров, описывающих ре-
58
акционно-диффузионные процессы. Можно поэтому утверждать, что химические неустойчивости задают дальний порядок, посредством которого система действует как целое» [62, 117].
Таким образом, категории целого и части оказываются значительно более адекватными применительно к процессам самоорганизации, чем категории «элемент» и «структура», особенно в том понимании последних, которое характерно для методологии физики при описании устойчивых равновесных систем, когда свойства системы полностью определяются взаимодействием ее элементов и понятие связи сводится к актуально осуществляющемуся их взаимодействию. Такое понимание было естественно для того уровня физического познания, когда физические системы рассматривались вне их становления и развития— лишь в их функционировании. Поскольку сложившаяся структура как закон определяет функционирование системы, анализ ставшего результата порождает видимость определяющей роли формы, т. е. готовые формы представляются изначальными условиями существования содержания. Но если форма определяется структурой, т. е. устойчивыми связями между элементами, то становятся понятными основания методологических установок редук-ционизма: от элемента к системе, от части к целому. Однако развитие идет не от части к целому, а от неразвитого целого к развитому целому.
Логический переход от категорий «элемент — структура» к категориям «часть-—целое» отражает переход в развитии. Элементы содержания организуются в части целого, когда они (или их совокупности) выполняют функцию в этом в целом. Например, автоволновые процессы в нейронных сетях осуществляют передачу информации, а в мышцах миокарда — механический макротранспорт вещества и энергии. Способность самоорганизующихся структур выполнять определенные функции в живом организме хотя и проливает новый свет на некоторые важные проблемы, скажем, морфогенеза, в принципе не вызывает удивления, поскольку диалектический подход к организму как целому давно представлен в методологии биологической науки, в частности через понятия органической системы, функциональной системы [17,16].
В методологии физики возможность отнесения самоорганизующихся систем к органическим системам открывает совершенно новую страницу, поскольку до сих пор объекты физико-химической природы рассматривались вне их становления и развития и соответственно выступа-
59
ли как «неорганические» системы, что оправдывало редук-ционистский подход к соотношению части и целого, элемента и структуры.
Как показано выше, именно соотнесение фундаментальных теорий физики «существующего» с новыми теоретическими построениями «физики возникающего» составляет одну из важнейших методологических проблем физической науки. На наш взгляд, переосмысление всего здания физики с точки зрения теорий самоорганизации предполагает рассмотрение устойчивых объектов, являющихся предметом теорий «физики существующего», как результата предшествующей самоорганизации. Категориальное обеспечение такого рассмотрения предполагает четкое различие категорий «целое» и «целостность», о чем пойдет речь в следующем параграфе.
Указанное различение позволит нам обратиться к понятию «мир как целое» и закончить исследование проблем формообразования Вселенной, поскольку самоорганизующимся целым в данном случае выступает в известном смысле именно мир. В тесной связи с этими проблемами находятся и вопрос об основании становления мира, и поиски подходов к философски корректным формулировкам некоторых предельных вопросов современной космологии. Что касается вопроса, поставленного в данном параграфе, то окончательные выводы, очевидно, делать рано. Хотя отдельные фрагменты категориальных схем формообразования удивительно удачно проецируются на теоретические модели синергетики и космологии (впрочем, сторонника диалектики это как раз и не должно, наверное, слишком удивлять), проводить дальнейший анализ, отвлекаясь от проблем детерминации, невозможно. Действительно, категории внутреннего и внешнего, к рассмотрению которых мы должны перейти в сответствии с принятой нами категориальной схемой формообразования, не поддаются анализу вне процесса детерминации. Так, внешняя форма складывается под влиянием всех условий, т. е. оказывается продуктом двойной детерминации: условиями и основанием.
Выявление отношений формообразования, даже если они взяты в их генезисе,— это отражение лишь одной из сторон сущности. Если ею ограничиться, то мы окажемся в рамках системно-структурного подхода в его структурно-генетическом варианте. Диалектика же как теория развития предполагает воспроизведение становления и развития предмета в его необходимости, детерминированно сти собственным основанием и условиями его формиро-
60
вания и существования. Поэтому, различив понятия «целое» и «целостность» применительно к самоорганизующимся системам, мы рассмотрим проблемы детерминации становления целого, а затем уже вернемся к рассмотрению формообразования в процессах самоорганизации.
§ 2. САМООРГАНИЗУЮЩАЯСЯ ЦЕЛОСТНОСТЬ И ЦЕЛОЕ КАК РЕЗУЛЬТАТ САМООРГАНИЗАЦИИ
По поводу соотношения категорий «целое» и «целостность» в литературе по материалистической диалектике можно встретить набор разных, иногда прямо противоположных мнений, опирающихся, впрочем, на одни и те же положения в работах Маркса и Гегеля. Так, А. Н. Аверьянов считает целостность признаком завершенности системы, конечности восходящего этапа данной системы [5, 32— 33], а Л. Г. Шаманский подчеркивает в понятии целостности изменчивый, незамкнутый характер [80, 18]. Впрочем, все авторы, затрагивающие проблемы целостности, связывают это понятие с органическим целым, с саморазвивающимися системами [4, 15; 71, 20; 17, 16; 82,14 ].
Нам в наибольшей степени импонирует и представляется наиболее обоснованным то различение целого и .целостности как категорий материалистической диалектики, которое проводит Л. Г. Шаманский. «Под целым,— пишет он,— понимается результат вместе со своим становлением, под целостностью — абсолютное движение становления» [80, 6], ссылаясь при этом на Гегеля: «Суть дела исчерпывается не своей целью, а своим осуществлением, и не результат есть действительное целое, а результат вме-ст'е со своим становлением» [24, 2]—и на Маркса: «Человек здесь не воспроизводит себя в какой-либо одной только определенности, а производит себя во всей своей целостности, он не стремится оставаться чем-то окончательно установившимся, а находится в абсолютном движении становления» [1,476].
Мы изложим основные черты различения понятий, соотносимых материалистической диалектикой с категориями «целое» и «целостность», с точки зрения рассматриваемой нами концепции, пытаясь параллельно сопоставлять философским положениям физические модели.
Итак, «в обоих понятиях представлены процессуальные (временные) характеристики, однако, если в определении целого процессуальность представлена ретроспек-
61
тивно: становление как движение к самому себе с позиций уже известного результата, то в определении целостности временной поток открыт в будущее; несмотря на то, что в понятиях целого и целостности отражается один и тот же процесс становления, однако различны стороны этого процесса: в понятии целого отражается устойчивость процесса становления, его повторяемость, тогда как в понятии целостности — его изменчивость, незамкнутый характер» [80,6—7].
Оговорим теперь одно терминологическое различие. Термин «целостность» как существительное, образованное от прилагательного, может обозначать признак как свойство предмета или сам предмет. У Л. Г. Шаманского термины «целое» и «целостность» отнесены к предметам (а не к свойствам или отношениям). Но может появиться потребность обозначить словом «целостность» не процесс «абсолютного движения становления», а признак того, что система стала целым, т. е. обозначить этим термином свойство, а не предмет. Кстати, цитировавшийся в начале параграфа А. Н. Аверьянов как раз в последнем смысле и использует термин «целостность». Тогда противоречие между ним и Л. Г. Шаманским кажущееся, поскольку, характеризуя признаком целостности завершенность системы, А. Н. Аверьянов дает как раз характеристику целого, устойчивый характер которого подчеркивает и Л. Г. Шаманский.
Итак, мы будем использовать термин «целостность» в двух смыслах: как обозначение открытого незамкнутого процесса становления системы целым (предмет) и как обозначение свойства (признака) системы, уже ставшей целым, свойства «быть целым». Различие словоупотребления будет очевидно из контекста.
Открытость, незамкнутость самоорганизующейся системы как целостности особенно ярко проявляется в критических точках, т. е. при тех значениях параметра, когда возникают бифуркации (норые решения уравнений). Ситуации возникновения бифуркаций связаны с неустойчивым состоянием системы, когда дальнейший путь ее эволюции не определен однозначно: в точке бифуркации решения уравнений раздваиваются.
И. Пригожин подчеркивает, что «вблизи фазового перехода мы имеем два «наиболее вероятных значения»... и флуктуации между этими двумя... значениями становятся весьма существенными» [62, 148]. Именно флуктуации определяют выбор между этими значениями и соответственно путь эволюции системы, причем следует иметь в ви-
62
ду, что сами флуктуации крупномасштабны и резко отличаются от средних значений параметров в исходном состоянии среды. Неустойчивость, открытость системы (в смысле проблематичности выбора дальнейшего пути) являются чертами становящейся целостности: «Вблизи критической точки химические корреляции становятся крупномасштабными. Система ведет себя как единое целое, несмотря на то, что химические взаимодействия носят короткодействующий характер» [62,148].
Неоднозначность возможностей, принципиальная роль случайности делает поведение становящейся целостности необратимым: движение в нелинейных диссипативных системах невоспроизводимо по начальным условиям. Однако для того чтобы необратимость в поведении самоорганизующейся целостности выступала в качестве момента развития, она не должна сводиться к невоспроизводимости этого поведения при воспроизведении начальных условий. Конечно, подойдя вновь к критическому значению параметра, система может в точке бифуркации в силу высокой вероятности флуктуации иного рода выбрать иной путь. А если система проходит ряд последовательных бифуркаций, ее судьба оказывается тем более неповторимой. При этом движение системы может усложниться в смысле роста упорядоченности, о чем свидетельствуют расчеты,— энтропия уменьшится [38, 15—19], хотя на первый взгляд это усложненное движение будет восприниматься как хаос: движение потока жидкости, например, приобретает все более сложный турбулентный характер, крупные вихри как самоорганизованные целостности дробятся; частота колебаний в радиотехнической или химической системе может последовательно удваиваться или стохастически меняться и т. д. При этом, однако, новизна самоорганизующихся целостностей будет преходящей и, так сказать, непринципиальной, поскольку здесь нет еще возможности сохранения ставшего, его воспроизведения, т. е. перехода от процесса становления целостности к его результату.
Необратимость, связанная не только с появлением, но и с удержанием нового, хотя и предполагает в качестве своего условия неустойчивое поведение исходной среды, с необходимостью требует устойчивости вновь сформировавшихся систем.
В синергетике понятие диссипативной структуры отражает именно устойчивые результаты самоорганизации. Попробуем проверить, соответствуют ли объекты, сопоставляемые этому понятию, категории «целое» в том ее
63
понимании, которое характерно для диалектической философской мысли.
Итак, понятие целого предполагает устойчивость, повторяемость, воспроизводимость процесса становления. Очень четко эти черты органического целого зафиксировал Шеллинг: «Изменение, обращенное на самое себя, приведенное в покой,— это как раз и есть организованность... Покой является выражением органического образования (структуры), хотя постоянное воспроизведение такой успокоенности возможно лишь благодаря непрерывно идущему внутри изменению» [81, 209—210].
Понятие структурной устойчивости, играющее важную роль в теории самоорганизации, открывает большие возможности для рассмотрения диссипативных структур как органического целого. Дело в том, что образование таких структур не зависит ни от разброса в начальных условиях, ни (коль скоро они уже образовались) от флуктуаций значений параметров. Например, «все свойства автоволны в вбзбужденной среде полностью определяются лишь характеристиками самой среды» [39, 8], скорость, амплитуда и форма автоволны не зависят от начальных условий, система как бы «забывает» их. Математически это может выражаться возникновением так называемого предельного цикла для траектории в фазовом пространстве решений соответствующих уравнений, т. е. со временем любая начальная точка в фазовом пространстве приближается к одной и той же периодической траектории [62, 113]. Это означает, что диссипативная структура способна к самовоспроизведению. Возникновение предельных циклов — не единственная форма поведения систем в «закритической» области их существования. Но в любом случае устойчивые диссипативные структуры характеризуются периодичностью своего поведения. Так, автокаталитические химические реакции, играющие важную роль в жизнедеятельности организма, имеют циклический характер. Известна, например, модель Эйгена, в основе которой лежит идея перекрестного катализа: «Нуклеотиды производят протеины, которые в свою очередь производят нуклеотиды. Возникает циклическая схема реакций, получившая название гиперцикла. Когда гиперциклы конкурируют, они обнаруживают способность, претерпевая мутацию и редупликацию, усложнять свою структуру» [62, 121].
Таким образом, диссипативные структуры можно рассматривать как органическое целое, воспроизводящее условия своего существования во взаимодействии со средой и способное к саморазвитию. Возникает вопрос: достаточ-
64
на ли степень устойчивой целостности, которая свойственна диссипативным структурам как органическому целому, для того, чтобы послужить основой возникновения структур более высокого уровня организации? В известном смысле — да, в качестве частей, выполняющих определенную функцию в целом. Мы уже упоминали о том, какие функции выполняют автоволновые процессы в развитом организме; понятие диссипативной структуры успешно применяется при синергетическом описании процессов морфогенеза, т. е. конкретного становления живого организма, формирования им своих частей. Но в этом случае речь идет скорее о воспроизведении известного целого, чем о становлении принципиально новой целостности, для которой целые предшествующего уровня развития выступают лишь как элементы, из которых новая становящаяся целостность уже может формировать себе части. Но для того чтобы выступить в качестве элемента, система должна обладать особенно высоким уровнем устойчивой целостности.
Вообще говоря, в философии целостность наивысшего уровня ассоциируется с понятием «тотальность». Гегель писал: «Отдельный круг именно потому, что он есть в самом себе тотальность, прорывает границу своей определенности и служит основанием более обширной сферы...» [25,100].
Этот аспект проявления тотальности — как бы вовне — в принципе можно было бы сопоставить со способностью сложной системы, обладающей высокой степенью устойчивой целостности, выступить в качестве элемента иного целого: «Целое — есть поэтому круг, состоящий из кругов, каждый из которых есть необходимый- момент»... [25, 100].
Однако если мы подходим к элементу как к проявленной вовне тотальности, то это обязывает к соответствующему взгляду на него изнутри как на конкретное, которое «есть развертывающееся в самом себе и сохраняющее единство, т. е. тотальность» [25, 100].
Таким образом, к системам, способным выступать в качестве элементов, следует, очевидно, подойти исторически, с точки зрения их становления, чтобы понять основания их устойчивой целостности как тотальности.
Исторический подход в физике применяется пока в основном в рамках синергетики, а сложные системы, способные выступать в качестве элементов (ядра, атомы, молекулы—фундаментальные структурные единицы материи), являются предметом традиционных физических теорий с их внеисторическим подходом. Значит, речь идет
65
опять-таки о сопоставлении «физики возникающего» и «физики существующего».
Нам представляется, такое сопоставление, проведенное на методологическом уровне, может быть полезно, по крайней мере, по двум пунктам. Во-первых, вычленив физический критерий устойчивой целостности для тех физических систем, которые продемонстрировали свою способность выступать в качестве элементов, мы можем проверить, соответствуют ли этому критерию диссипативные структуры. Во-вторых, следует поискать пути применения исторического подхода, свойственного теориям самоорганизации, к структурным единицам вещества, чтобы выяснить, корректно ли по отношению к ним употребление категории «тотальность».
§ 3. ЕДИНЫЙ ФИЗИЧЕСКИЙ КРИТЕРИЙ УСТОЙЧИВОЙ ЦЕЛОСТНОСТИ ЖИВЫХ И НЕЖИВЫХ СИСТЕМ
Критерий устойчивости замкнутой физической системы, принятый в методологии линейной физики (энергия внутреннего взаимодействия элементов системы больше энергии внешних воздействий), заведомо неприменим к состояниям, далеким от равновесия. Неравновесные системы принципиально открыты, поскольку и энергетически малое воздействие, если оно резонансно характеристическим особенностям системы, может привести к существенным изменениям. В этом смысле понятие замкнутой (не обменивающейся со средой веществом), а тем более изолированной (не обменивающейся со средой энергией) системы соответствует лишь некоторым искусственно созданным и специально поддерживаемым ситуациям (термостат, например), а по отношению к природным объектам оказывается основанным на идеализации.
Более того, названный нами критерий ограничен уже по отношению к квантовым представлениям, поскольку внешнее воздействие может быть воспринято квантовой системой не при любой его энергии, а лишь при определенном, характерном для данной системы значении. Эти характеристические значения различаются для ядер, атомов, молекул на порядки, что и определяет существование иерархии уровней структурной организации материи или «квантовой лестницы». Так удачно был назван В. Вайскопфом [22, 46—53] тот абстрактный объект физической картины мира, который позволяет соотнести на основе квантовых принципов предметы разных физических тео-
66
рий. Квантовая физика дает основание для объяснения устойчивости всех сложных систем, поскольку она выдвигает основания устойчивости их элементарных составляющих. Дискретность энергетических состояний ядер, атомов, молекул как квантовых систем определяет характеристические значения квантов энергии, которые эти системы могут поглощать, и соответственно наличие собственных характеристических частот спектров их излучения и поглощения.
Интересно, что спектры ядер, атомов, молекул имеют «одночастичный» характер, т. е. представляют собой набор узких дискретных линий, в отличие от широкополосных спектров коллективных связанных состояний многочастичных образований. Между тем сами ядра, атомы, молекулы также являются многочастичными системами, однако имеют линейные «одночастичные» спектры, т. е. выступают как одна частица, что и позволяет им играть роль элементов по отношению к системам более высокой ступени квантовой лестницы. Если, как мы условились, считать эту способность проявлением тотальной целостности (тотальности) сложных систем, то в качестве физического критерия тотальности можно выдвинуть «одночастичность» спектров действия системы, т. е. наличие у нее собственных характеристических частот .
На уровне квантовомеханической теории свойство целостности выражается через описание системы одной волновой функцией. Такое свойство проявляется не только микроскопическими объектами (ядро, атом, молекула). Существуют макроскопические квантовые эффекты (сверхпроводимость, сверхтекучесть), при которых система ведет себя как целое и описывается одной волновой функцией. Равновесные фазовые переходы второго рода приводят к образованию таких макроскопических квантовых структур за счет снятия хаотичных тепловых перемещений микрочастиц при сверхнизких температурах и установления глобальной когерентности их движения.
Однако для того чтобы система обладала высокой устойчивостью, необходима еще и периодичность волновой функции, описывающей систему. «Если гамильтониан имеет дискретный спектр,— пишет И. Пригожин,— то и изменение волновой функции периодично» [62, 184]. В свою очередь существование дискретных энергетических состояний системы (дискретный спектр гамильтониана) прояв-
___________________
*Этот критерий (без использования понятия "тотальность") был сформулировал С.П. Ситько [86, 135-137].
67
ляется в дискретности спектров ее излучения и поглощения, а периодичность волновой функции свидетельствует об устойчивости системы, воспроизводящей себя как целое. Таким образом, И. Пригожин вплотную подходит к возможности формулировки того физического критерия устойчивой целостности систем, который мы рассматриваем. Но И. Пригожина интересует как раз неустойчивость, необратимость неравновесных фазовых переходов. И он подчеркивает, что необратимость процессов может иметь место при выполнении необходимого условия, которое состоит в существовании непрерывного спектра функции Гамильтона для системы [62, 184].
Таким образом, то различие незамкнутой, становящейся целостности, необратимой в своей невоспроизводимости, и целого на уровне тотальности, воспроизводящего процесс своего становления и сохраняющего себя как его известный результат, то философское различие, о котором шла речь в предыдущем параграфе, может быть выражено математически. Обобщая условие необратимости, сформулированное для квантовых систем, И. Пригожин пишет: «Необратимость может возникать в классических и квантовых системах, причем в обоих случаях только при условии, что оператор Лиувилля имеет непрерывный спектр» [62, 266]. Дискретный спектр энергетических состояний системы и наличие собственных характеристических частот, связанных с переходом между этими состояниями, — это в соответствии с приводимым нами критерием признак тотальной целостности системы.
Итак, различие между объектами физики возникающего и физики существующего может быть выражено математически, но связь между ними еще не столь ясна. Правда, существует объект, сконструированный на основе квантовой механики, который оказался прототипом синергетической системы [75, 26]. Это лазер. Неравновесный фазовый переход, осуществляемый при определенной мощности накачки, приводит к тому, что атомы рабочего тела лазера начинают действовать скоррелированно, в результате чего лазер испускает монохроматический свет. Когерентность лазерного излучения — это, как и в случае со сверхпроводимостью, макроскопический квантовый эффект, но достигаемый в открытой системе за счет получения энергии извне.
Однако лазер как синергетическая система не обладает даже той степенью структурной устойчивости, которую проявляют, например, диссипативные структуры. Дело в том, что предельные циклы в решении нелинейных уравне-
68
ний могут появляться только при наличии особых точек. чего нет в случае с лазером. Таким образом, хотя между становящейся целостностью процессов самоорганизации и тотальной целостностью структурных единиц материи можно расположить с позициий категориального анализа диссипативные структуры как целое, являющееся результатом процесса становления, все же это не дает еще оснований говорить ни о самоорганизации устойчивых систем квантовой физики, ни об устойчивости диссипативных структур, достаточно высокой, чтобы они могли выступать в качестве элементов других систем. Между тем последовательное проведение идеи развития в современной научной картине мира требует и того и другого. Действительно, вопросы типа генезиса химических элементов или соотношения популяции и организма занимают важное место в реализации эволюционного подхода в современном естествознании.
Новые возможности для решения поставленных выше мировоззренческих вопросов и методологических проблем появились благодаря новым открытиям в области физики живого. Предваряя дальнейшее изложение, скажем, что техническое развитие производства генераторов электромагнитного излучения сверхвысокой частоты открыло перед исследователями такую область частот электромагнитного поля, к воздействию которых живые организмы оказались неожиданно чувствительны. Так, хотя электромагнитное поле в этом диапазоне особенно сильно поглощается водой (поэтому в солнечной радиации у поверхности земли эти частоты практически отсутствуют — их поглощают водяные пары в атмосфере), а живые организмы на Земле содержат много воды, воздействие на точно определенных частотах низкоинтенсивным полем очень сильно (носит резонансный характер). Ниже будет показано, почему возникла мысль о возможности выработки единого физического критерия целостности для живых и неживых систем [9, 24] при экспериментальном обнаружении резонансного воздействия электромагнитного излучения (в диапазоне миллиметровых волн) на живые системы — от простейших [27, 452—469] до человека [6, 60—63: 7, 24-32].
Эксперименты показали, что человеческий организм с функциональными нарушениями способен различать ничтожное изменение частоты внешнего электромагнитного излучения миллиметрового диапазона. При воздействии на точки акупунктуры, связанные с «больными» органами меридианами в соответствии с картографией иглорефлек-
69
сотерапии, электромагнитными полями с очень низкой (нетепловой) интенсивностью от нескольких квт/см2 до долей мквт/ см2 на определенных частотах в диапазоне 50—70 Ггц наблюдается терапевтический эффект.
Сенсорный отклик организма и аппаратурная регистрация изменений его физиологического состояния позволяют осуществлять настройку на «терапевтическую» частоту. Для нас важно подчеркнуть следующее:
1) точки воздействия могут находиться на больших (метр и более) расстояниях от «больного» органа и соответственно от области регистрируемых ощущений, т. е. организм реагирует на внешнее воздействие как целое;
2) прохождение «резонансной» частоты при настройке может иметь либо триггерный, либо гауссовский характер, причем в последнем случае относительная ширина гаус-совского типа иногда составляет доли процента, т. е. организм проявляет наличие характеристических частот одночастичного типа;
3) микроволновая резонансная терапия (так был назван этот метод лечения) оказалась эффективной для широкого класса заболеваний: от язвы желудка и 12-перст-ной кишки до склероза, костных болезней и психических расстройств (к настоящему времени это проверено более чем на 4000 больных), т. е. воздействие со строго определенной частотой вызывает переход системы в другое энергетическое состояние, как в квантовой системе;
4) по мере выздоровления реакция организма на электромагнитное поле ослабевает, и здоровые люди практически не чувствительны к потокам такого уровня, т. е. когда организм переходит в устойчивое состояние, он не чувствителен к флуктуациям.
Оценки показывают, что большие белковые молекулы, взятые изолированно, могут иметь колебательные уровни в диапазоне 1010—1011 Ггц, однако в конденсированной среде их энергетический спектр должен стать квазинепрерывным без дискретных состояний, способных воспринять внешнюю информацию в указа.нном частотном диапазоне. Вещество живого организма является конденсированной средой. Тем не менее обнаруженные резонансные полосы имеют ширину одночастичных спектральных линий. Это свидетельствует о дискретности энергетических состояний живых систем, поразительно аналогичной дискретности энергетических состояний таких устойчивых квантовых физических систем, как ядро, атом, молекула.
То обстоятельство, что именно такой (одночастичный) характер носят спектры действия живых организмов, дает
70
возможность предположить, что физические основания устойчивой целостности живого организма те же, что и на других ступенях квантовой лестницы: живой организм является квантовой системой. Тогда в качестве универсального физического критерия устойчивой целостности фундаментальных структурных единиц материи может выступать наличие у них собственных характеристических частот.
Возможность применения понятий квантовой физики (волновая функция, ее фаза, дискретность состояний, вырождение уровней и т.д.) к описанию макроскопических явлений определяется наличием в системе глобальной когерентности поведения ее элементов. Она может достигаться при фазовых переходах второго рода (сверхпроводимость, сверхтекучесть) или при неравновесных фазовых переходах (когеренция лазерного излучения, эффект Джозефсона) за счет самоорганизации.
Применительно к биологическим системам понятие когерентного возбуждения впервые ввел Фрелих [85, 613— 617]. Он показал, что за счет метаболической накачки в нелинейной среде формируется мода коллективных колебаний ансамбля однотипных клеток с частотой, соответствующей нижайшему одночастичному колебательному состоянию.
Экспериментальная фиксация проявления в резонансных эффектах характеристических частот живых организмов и теоретические указания на возможность их объяснения на основе понятия самоорганизации демонстрируют фундаментальную значимость синергетического подхода при описании биологических систем. -Возможности этого подхода не исчерпываются созданием математических моделей самоорганизующихся процессов в однородных системах организма (ритмика сердечных сокращений, электрическая активность мозга, дифференциация структур крыла дрозофилы).
Как экспериментальные и модельные данные, так и существующие представления о ходе биохимических реакций в организме [55, 202] говорят о том, что в нем должны обязательно существовать автоволновые процессы. Вопрос состоит лишь в том, какие масштабы они захватывают. За счет обычной диффузии это возможно только в ограниченных объемах (к примеру, внутри клетки), ибо организм представляет собой сугубо неоднородную среду, и неоднородности оказывают существенное влияние на характер развития процесса.
Приведенные соображения говорят в пользу высказы-
71
ваемой неоднократно ранее гипотезы о роли собственных электромагнитных полей в регуляции и синхронизации внутриклеточных процессов в целом организме. С этой точки зрения физическим агентом, осуществляющим роль переносчика информации об интенсивности некоторой реакции в заданном объеме ткани биообъекта, может быть электромагнитное поле в форме электромагнитной волны, спиновой волны или волны продольной поляризации. Важно, чтобы длина эффективного взаимодействия между «излучателем» и «приемником» была больше морфологических неоднородностей. Комбинация дальнодействующего электромагнитного поля с диффузионными процессами может выступить фактором, обеспечивающим кооперативность метаболических процессов в организме в достаточно больших объемах. Для математического описания поведения такого типа структур могут использоваться системы нелинейных дифференциальных уравнений и их решения в виде предельных циклов. Это особый вид автоволновых процессов, с которыми связывают накопление и циркуляцию энергии метаболизма.
С. П. Ситько и др. было высказано предположение [65, 60—63], что известные в иглорефлексотерапии «меридианы» и являются по сути пространственными решениями упомянутой системы уравнений, задающими векторное поле потока энергии метаболизма (трехмерные метаболические «вихри», выделяемые в определенном объеме активной среды). Этот поток может осуществлять в организме и информационное, и энергетическое воздействие, поскольку двенадцать основных меридианов проходят своими «внутренними ходами» через все жизненно важные органы тела: сердце, легкие, желудок и т. д., а на их «внешних ходах» расположены точки акупунктуры — селективные по частоте приемники внешних «пусковых сигналов». Проводя анализ численных решений модельных уравнений, записанных для простейших случаев, Ф. Кайзер [35, 250—285] показал сильную зависимость положений и формы предельных циклов от начальных условий, частоты и интенсивности таких сигналов, особенно в окрестностях особых точек, которые в нашем случае можно отождествлять с точками акупунктуры. Такая гипотеза позволяет трактовать сенсорную реакцию «в больном» органе как энергетический ответ организма на коррекцию пространственного положения соответствующего предельного цикла через особые точки.
Безусловно, строгое аналитическое решение задачи предполагает знание конкретного микроскопического ме-
72
ханизма, ответственного за формирование когерентного электромагнитного поля. Основываясь на экспериментальных данных (ширина резонансов примерно 0,1 %, а величина энергии отдельных квантов (2—3)10-4 эВ), можно значительно ограничить круг моделей, пригодных для соответствующего описания, поскольку, как указывалось, дискретные переходы в области 5·1010—5·1011 Ггц в неживых многочастичных системах должны отсутствовать. В живой же материи они возможны только в тех случаях, когда состояния, генерирующие эти переходы, выделяются на тепловом фоне. Известно несколько теоретических моделей, обеспечивающих такую возможность. В концепции Фрелиха [85, 613—617] предполагается, что за счет нелинейных процессов химический потенциал системы тождественных молекул может сместиться в район наиболее низкого коллективного колебательного состояния, обеспечивая при Бозе-конденсации большую неравновесную заселенность последнего за счет энергии метаболических процессов. Часть ее и накапливается в предельных циклах на частоте накачки этого состояния.
Известна модель солитонного транспорта энергии вдоль белковых молекул, предложенная А. С. Давыдовым [84, 83—115]. Теоретически обоснована резонансная фотодиссоциация долгоживущих солитонов на экситон и локальную деформацию при значениях частот внешнего поля 3·1010—7·1010 Ггц, т. е. существует возможность такого рода вмешательства в ход метаболических процессов.
Кроме того, было высказано предположение [66, 65], что информационная связь с внешним полем и транспорт энергии вдоль пространственных траекторий предельных циклов могут быть обусловлены спиновыми состояниями белковых молекул. Эта гипотеза нашла экспериментальное подтверждение [8, 58—83].
Вкратце предлагаемая Ситько и Сугаковым гипотеза означает следующее. Электромагнитные волны диапазона 45—65 Ггц, возникая в организме в результате переходов между подуровнями триплетного спин-спинового расщепления, обеспечивают универсальную дальнодействующую когерентность, которую не ограничивают неоднородности реальных живых структур. Роль короткодействующих активаторов могут выполнять ферментативные комплексы, активность которых, как известно [19, 152], триггерным образом зависит от ориентации спина внешних электронов в активных центрах.
Как видим, рассмотрение живого организма как це-
73
лостной физической системы при развитом понимании целостности в физике не означает редукции биологии к физике, поскольку причина того, что система оказалась целостной и в физическом смысле, имеет биологический характер. Действительно, возникновение предельных циклов, обеспечивающих физическую целостность системы, связано с нелинейностью в системе; нелинейность существует за счет химической энергии метаболизма, а основа метаболизма — биологический обмен веществ, т. е. все формы движения работают каждая на своем уровне и в тесной связи друг с другом; соответственно коррелируются методы естественных наук при описании живого. Значит, естествознание подошло к такому уровню развития, когда живая система может быть понята в своей специфической целостности только в том случае, если целостность эта прослежена во всех аспектах существования живого.
Высокая степень общности законов самоорганизации, их применимость в равной мере к физическим, химическим, биологическим, экологическим и другим системам, с одной стороны, создает предпосылки для синтеза естественнонаучного знания, а с другой — совершенно меняет ситуацию в осуществлении интеграционных процессов в науке. Речь идет прежде всего о соотношении методов естественных наук при исследовании живого.
До тех пор, пока физика занималась устойчивыми равновесными системами, применение физических методов, ориентированных на редукцию, на сведение свойств системы к свойствам элементов и их взаимодействий, было возможно лишь при анализе структуры биологического объекта. Целостность живых организмов, их способность к эволюции могли быть обнаружены лишь методами биологической науки. Несоответствие между методологическими установками наук, использовавшихся при изучении живого, создавало больше трудности для теоретического синтеза получаемых ими результатов; сведения об атомно-молекулярной структуре биологических объектов, даваемые физикой и химией, не сопрягались с биологическим знанием о функциях, выполняемых структурными элементами, организованными в части биологического целого.
Сейчас, когда физика и химия подошли к проблеме становления, оказалось, что у этих наук открылась возможность для исследования биологических систем как целостных образований. Действительно, если живой организм является целостной системой, то, очевидно, целостность его должна обеспечиваться на всех уровнях: и на биологическом, и на химическом, и на физическом. Дру-
74
гой вопрос, насколько близко та или иная наука подошла к тому, чтобы объяснить эту целостность со своих позиций. Если физика, химия, биология выработали свои критерии целостности, то и целостная биологическая система должна отвечать всем этим критериям.
Таким образом, мы рассматриваем живой организм как квантовую систему и диссипативную структуру, образовавшуюся в результате неравновесного фазового перехода и постоянно воспроизводящую себя благодаря процессам самоорганизации.
Указанный подход позволяет выделить среди диссипативных структур живые организмы как особый класс устойчивых целостных систем. Очевидно, к ним в полной мере можно отнести категорию тотальности. Во-первых, внешне они проявляют себя как высокоустойчивые системы. Во-вторых, организмы способны выступать в качестве элементов в экологической пирамиде (биогеоценоз в данном случае выступает как целое, формирующее себе в качестве частей популяции из элементов, которыми и оказываются особи определенного вида, т. е. живые организмы). В-третьих, сам живой организм—это «развертывающееся в самом себе и сохраняющее себя единство, т. е. тотальность, и лишь посредством различия и определения различий может существовать их необходимость и свобода целого» [25,100].
Попытке подойти к структурным элементам вещества как к результату самоорганизации (т. е. перейти от аналогии между некоторыми диссипативными структурами и квантовыми системами к аналогии между квантовыми системами и самоорганизующимися структурами) будет посвящен следующий параграф.
§ 4. ДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ КВАНТОВОЙ СИСТЕМЫ КАК САМОВОСПРОИЗВЕДЕНИЕ СТАВШЕГО ЦЕЛОГО
Мировоззренческое значение современной революции в физике трудно переоценить, ведь она оздает основу для выработки единой научной картины мира, как компонента научного мировоззрения. Действительно, единая научная картина мира в принципе должна представлять собой генерализованный синтез частонаучных картин мира, опирающийся на целостный образ природы в ее саморазвитии. Для того чтобы основанный на принципе развития синтез был осуществлен, этот принцип должен выступать в качестве ор-
75
ганизующего начала во всех синтезируемых-картинах мира, а также эксплицироваться в закономерностях, общих для процессов развития, изучаемых разными областями науки.
Оба эти условия начали осуществляться при развертывании современной революции в естествознании: синергетика изучает общие закономерности становления сложных систем, а физическая картина мира, долгое время при всех изменениях остававшаяся антиэволюционистской, начинает перестраиваться на основе исторического подхода к отражаемым ею объектам. Собственно, осуществление названных условий представляет собой единый процесс, поскольку перестройка физической картины мира на эволюционистский лад основана на освоении идей самоорганизации всей физической наукой.
Следовательно, речь идет о мировоззренческом значении той методологической проблемы соотношения «физики существующего» и «физики возникающего», решение которой определит, на какой основе будет обеспечено единство физического знания. Либо выведение линейной «физики существующего» как частного случая, соответствующего условиям применимости идеализирующих представлений, из нелинейной «физики возникающего», либо сведение последней к особо сложным вариантам динамики систем, фундаментальные основы существования которых уже описаны «физикой существующего», — такова методологическая альтернатива, стоящая перед современной физикой. Ее культурное значение почти трагически обрисовано И. Пригожиным и И. Стэнгерс в их книге «Порядок из хаоса» [63, 432]. Трудно переоценить и мировоззренческое значение решения этой проблемы, о котором шла речь выше. Переосмысление всего физического знания с позиций идей самоорганизации — необходимый момент построения новой, эволюционистской физической картины мира.
Именно в контексте этих мировоззренческих и методологических вопросов и раскрывается смысл аналогии между тотальной целостностью живого организма как самоорганизующейся диссипативной структуры и устойчивостью структурных единиц вещества, позволяющей им выступать в качестве элементов систем более высокого уровня организации.
Практически речь идет об одном из вариантов возможности рассмотреть ядро, атом, молекулу как результат процессов самоорганизации. Только такой подход позволит вписать их в историю саморазвития природы физической
76
картины мира, основанной на принципе развития. Только такой подход позволит рассмотреть их как целое, как результат становления, способный к самовоспроизведению, а тем более обсуждать вопрос о применимости к этим объектам понятия тотальности (тотальной целостности). Действительно, целое как тотальность может быть рассмотрено лишь исторически конкретно, т. е. как «развертывающееся в самом себе и сохраняющее себя единство» [25, 100]. Это условие выполняется, на наш взгляд, при попытке рассмотреть интересующие нас объекты как продукт самоорганизации, т. е. как бы «изнутри», в становлении. Обнаружение того обстоятельства, что живой организм отвечает тому же физическому критерию устойчивости целостности, что и основные структурные единицы вещества, являющиеся квантовыми системами, послужило основанием для проведения аналогии между живым организмом и квантовой системой. В процессе развертывания этой аналогии оказалось, что квантовые свойства живого организма определяются тем, что он является самоорганизующейся системой, воспроизводящей свою целостность как диссипативная структура особенно высокого уровня устойчивости. Мы обозначили в соответствии с философской традицией такую устойчивую целостность самовоспроизводящегося и саморазвивающегося объекта понятием «тотальность».
Основываясь на обнаруженном совмещении в живом организме свойств квантовой системы и самоорганизующейся диссипативной структуры, проведем теперь обратную аналогию между квантовыми системами и живым организмом, т. е. рассмотрим квантовые системы особенно высокого уровня устойчивости (ядра, атомы, молекулы) как самоорганизующиеся и самовоспроизводящиеся структуры (возможность применения к ним понятия «диссипатив-ность» проблематична и требует уточнения). Если такую аналогию удастся провести и обосновать, то это и будет основанием того отнесения к структурным единицам вещества категории «тотальность», которое мы провели в § 2 этой главы, исходя из категориального анализа в рамках категорий «целостность», «целое», «тотальность» процессов формообразования, исследуемых современной физической наукой.
Теоретическим основанием проводимой нами аналогии служит создание унитарных калибровочных теорий физических взаимодействий, дающее возможность рассматривать спектр существующих элементарных частиц как результат спонтанного нарушения локальных симметрий на
77
ранних стадиях развития Вселенной. Построение космологических моделей, воспроизводящих исторические процессы становления элементарных частиц, ядерного синтеза, образование химических элементов как процессы самоорганизации, в настоящее время уже началось.
Итак, определим фундаментальные структурные единицы вещества — ядро, атом, молекулу — как результаты самоорганизации материи на соответствующих уровнях. Количественной мерой уровня служит интенсивность взаимодействия с внешней средой, определяющая энергию связи образовавшейся стабильной системы. Таким образом, иерархию уровней структурной организации материи (или «квантовую лестницу»), отражавшую в современной физической картине мира строение материи, мы будем рассматривать как результат предшествующей самоорганизации.
Следует иметь в виду, что поскольку мы проводим категориальный анализ, необходимо каким-то образом зафиксировать на категориальном уровне отличие подхода с позиций теории самоорганизации к тем качественным скачкам, с которыми связано формирование структурных единиц вещества, от подхода линейной физики. Дело в том, что с точки зрения равновесной термодинамики образование ядерных, атомных, молекулярных структур можно рассматривать аналогично образованию кристаллических структур при понижении температуры, т. е. как равновесный переход. Увеличение упорядоченности, т. е. понижение энтропии, здесь можно связать с больцма невским принципом упорядоченности [59, 512].
Больцман, рассматривая энтропию как меру неупорядоченности системы, показал, что термодинамическое равновесие -замкнутой системы характеризуется максимумом энтропии и связано с предельно неупорядоченным состоянием. Максимальная упорядоченность равновесной системы, обменивающейся энергией (но не массой) с внешней средой при заданной температуре, определяется минимумом свободной энергии. Равновесие достигается при низких температурах, минимальной энергии и малой энтропии. Примером равновесной упорядоченной структуры является кристалл. При нагревании эта структура разрушается, сменяясь менее упорядоченным движением молекул в расплаве и их хаотическим движением в газе (соответственно растет и энтропия). Аналогично при повышении температуры упорядоченное движение электронов в атоме сменяется их беспорядочным движением в плазме, а при дальнейшем существенном увеличении энергии развали-
78
ваются ядра и начинают беспорядочное движение их структурные элементы.
Однако при попытке пройти описанный путь в направлении, соответствующем увеличению упорядоченности, а не ее уменьшению, т. е. в направлении, соответствующем историческому движению становления структурных единиц вещества, представления о равновесных фазовых переходах обнаруживают свою ограниченность, а идеи самоорганизации представляются весьма перспективными. Так, с их помощью могут быть сняты методологические трудности в объяснении образования оболочечной структуры ядра, нашедшие, в частности, отражение в исторически закрепившейся терминологии («магические» ядра, «магические» числа). Речь идет о методологическом обосновании самопроизвольности формирования самосогласованного потенциала системы сильновзаимодействующих нуклонов в отсутствие силового центра. Теория самосогласованного ядерного потенциала лежит в основе оболочечных моделей ядра, которые не только объясняют явления «магичности», ной являются теоретической основой количественных методов в ядерной физике, предсказывающих значения характеристических частот ядерных переходов, спины и четности дискретных энергетических состояний ядра как устойчивой квантовой системы.
Что касается атомного уровня, то здесь, казалось бы, нет места для ситуаций выбора, характерных для неравновесных фазовых переходов. Действительно, заряд атомного ядра однозначно определяет строение атома химического элемента. Однако реальная история образования химических элементов ничего общего не имеет с автоматическим возвращением электронов на места в атоме при охлаждении плазмы. Обычный процесс горения, ассоциируемый с низкотемпературной плазмой,— это химическая реакция окисления, в результате которой энтропия увеличивается [83, 116—117]. А реальные исторические процессы образования атомов химических элементов с понижением энтропии, в недрах ли звезд или планет, очевидно, были достаточно сложными, происходили в разных условиях и содержали существенный элемент случайности — не случайно чистый углерод в природе встречается в столь разных формах, как графит и алмаз. Кроме того, с образованием химических элементов начались химические реакции, протекание которых принципиально неравновесно. Молекулярный уровень, как показала уже структурная химия, в своем формировании также содержал принципиальный момент неоднозначности.
79
Даже если подходить к ядру, атому, молекуле как ставшим образованиям, рассмотрение их как равновесных образований все равно приводит к противоречию с квантово-релятивистскими представлениями, но этот вопрос мы обсудим позже. Здесь же отметим, что наличие неоднозначности (бифуркации), характерное для неравновесных фазовых переходов, совершенно не исключено при конкретно-историческом рассмотрении формообразования структурных единиц вещества. Поэтому здесь вполне может работать то категориальное различение процессов самоорганизации от фазовых переходов другого рода, которое приводит И. Пригожин в связи с расширением физического понимания категории времени. Именно благодаря неоднозначности выбора в точках бифуркации время в теориях самоорганизации обретает подлинную необратимость. В отличие от динамических теорий — классических, релятивистских, квантовых (где время обратимо), в термодинамике диссипативных структур время перестает быть простым параметром, а оказывается понятием, выражающим темп и направление событий.
Направленность времени диктовалась и классической термодинамикой. Направление «стрелы времени» задавалось там возрастанием энтропии. До сих пор противоречие между динамическим и термодинамическим способами описания действительности и пониманием времени разрешалось в методологии физики, так сказать, в пользу динамики. Т. е. динамическое описание считалось фундаментальным, а второе начало термодинамики — результатом приближенных процедур, связанных с макроскопическим рассмотрением. Такой взгляд подкреплялся и тем обстоя-гельством, что динамическое описание в системах, описываемых термодинамикой, осуществлялось на микроскопическом уровне. Стандартная же объяснительная схема связывала поиски сущности с обращением к более низкому уровню структурной организации материи. Динамическое описание рассматривалось как более фундаментальное еще и в силу его микроскопичности.
В еще большей степени научная респектабельность микроскопического подхода сказывается при оценке учеными синергетического описания макроявлений, в частности термодинамического описания неравновесных фазовых переходов. Использование феноменологических уравнений эволюции ограниченного числа макроскопических переменных рассматривается как приближенная процедура, к применению которой вынуждает сложность решения ки-
80
нетических уравнений неравновесной статистической механики.
И. Пригожин занимается проблемой точного вывода основного кинетического уравнения из динамики. Сама возможность этого вывода обусловливается введением операторов, которые явным образом нарушают симметрию относительно обращения времени, т. е. необратимость, наблюдаемая на макроуровне, с самого начала предполагается и при микроскопическом рассмотрении. Внедрение операторов энтропии и времени приводит к выделению «внутреннего времени системы» [62, 234]. При этом второе начало термодинамики рассматривается как фундаментальный динамический принцип. Пригожин пишет: «Применение второго начала позволяет нам определить новое внутреннее время Т, которое, в свою очередь, дает возможность сформулировать нарушение симметрии, лежащее в основе второго начала. Как было показано, введенное нами внутреннее время существует только для неустойчивых динамических систем. Его среднее согласуется с динамическим временем (в соответствующих ситуациях)» [62, 246]. Однако И. Пригожин подчеркивает: «По своим наручным часам мы можем измерять свое среднее внутреннее время, но понятия внешнего и внутреннего времени совершенно различны» [62, 246]. Интересно, что введение внутреннего времени связано с нелокальным описанием системы и в пространстве, и во времени. В ситуациях динамической неустойчивости, когда можно ввести внутреннее время, понятие траектории в фазовом пространстве становится неприменимым, а настоящее перестает быть моментом, оно обретает продолжительность, определяемую характерным временем [62, 236, 241—243].
И. Пригожин, разделяя мысль о фундаментальности микроскопического подхода, проводит важную работу по установлению соответствия между термодинамикой и динамикой (в ее классическом и квантовом вариантах). Развивая представления о внутреннем и внешнем времени, мы предполагаем использовать их различия для рассмотрения соотношения между устойчивыми и неустойчивыми структурами. При этом наиболее фундаментальные устойчивые структуры нашего мира — молекулы, атомы, ядра — мы будем рассматривать как результат предшествующей самоорганизации, т: е. перенесем по аналогии способ образования неравновесных диссипативных структур на прошлое нынешних замкнутых устойчивых структур.
Хотя структура низшего уровня может участвовать в качестве элемента в неравновесном процессе образования
81
структуры высшего уровня, т. е. участвовать в процессе, характеризуемом внутренним временем, для нее это время выступает как внешнее, а внутренние процессы в силу своей периодичности не ассоциируются с временем, понимаемым как выражение темпа и направленности событий. Для характеристики внутреннего и внешнего времени Пригожин пользуется понятиями Аристотеля, различавшего движение как превращение (метаболе) и перемещение (кинезис), и ассоциирует с первым типом движения внутреннее время системы, а со вторым — внешнее. Если учесть, что реальным внутреннее время бывает лишь для процессов становления, то можно считать, что при периодическом воспроизведении себя ставшим целым его внутреннее время приобретает фиктивный, мнимый характер. Это означает, что для более полного и точного понимания процессов саморазвития материи можно использовать понятие комплексного времени [9, 11]. События, происходящие в объективном мире, разворачиваются тогда не на линии реального времени, а в плоскости комплексного времени.
Рассмотрим конкретный пример. Пусть сформировалось ядро железа и температура понизилась до характерных атомных величин. Потока энергии через ядерную систему, т. е. взаимодействия со средой на уровне ядерных величин, нет. Ядро застыло в своем развитии, это устойчивая форма. Хотя движение составляющих ядро нуклонов существует, в силу своей периодичности оно происходит в мнимом времени. Заполняются атомные оболочки — возникает структурирование материи на новом, атомном уровне. Пока происходит обмен веществом и энергией с внешним миром, самоорганизация материи на этом уровне — направленный процесс. Это означает, что существует реальное внутреннее время как продолжительность процесса фазового перехода, который описывается принципами самоорганизации. Эта продолжительность «момента» трансформации задает и масштаб времени, характерный для этого уровня и процесса. С завершением формирования атомной оболочки опять-таки остается только периодичность движения субатомных структур. Стрела времени поворачивается вдоль мнимой оси.
Таким образом, периодичность движения, математически выражаемая периодичностью волновой функции, является признаком того, что, когда система становится целым, ее внутреннее время оказывается мнимым, что и отражает высокую устойчивость этой целостности. Какие
82
же периодические процессы обеспечивают сохранение такого устойчивого целого, как, скажем, атом?
Связь между элементами атомной системы, с точки зрения такой релятивистской квантовой теории, как квантовая электродинамика, осуществляется за счет обмена виртуальными квантами полей (фотонами в случае электромагнитного взаимодействия между ядром и электронами в атоме). Виртуальные кванты полей превращаются в действительные лишь при сообщении системе необходимой энергии, а без этого представляют особый тип существования на грани возможного и действительного.
Следует отметить, что релятивистская квантовая электродинамика предсказывает экспериментально обнаруженные эффекты (тонкая структура спектра излучения атома водорода) на основе предположения об обмене виртуальными квантами электромагнитного и электронно-позитронного полей с их вакуумными состояниями. Т. е. обмен со средой, породившей во времена неустойчивости, связанной с высокими температурами, атомные структуры, продолжается и после стабилизации положения, но является периодическим устойчивым процессом, воспроизводящим атом как целое.
Методологическим основанием проведенной нами аналогии служит тот факт, что стандартная методологическая редукционистская концепция осуществления связей в системе за счет близкодействия с помощью распространения поля демонстрирует свою ограниченность как раз при рассмотрении атомных систем. Виртуальные кванты полей— носителей взаимодействия приобретают в этом случае характер чисто математических абстрактных объектов. Они не могут превратиться в действительные кванты полей, поскольку условие близкодействия в данном случае нарушено. Дело в том, что рассмотрение взаимодействующих зарядов в стабильном атоме как покоящихся друг относительно друга не позволяет рассматривать распространение поля между ними с конечной скоростью и ввести момент запаздывания.
Иными словами, квантово-релятивистский взгляд на стабильные атомные системы обычно не может быть последовательно проведен в атомной физике. Атом рассматривается в нерелятивистском приближении квантовой механики в свете идеализации дальнодействия. Немудрено, что виртуальные кванты полей оказываются при этом такими же математическими абстрактными объектами, какими были поля в механике сплошных сред до Фарадея. Квантовая электродинамика вносит в квантово-механиче-
83
ское рассмотрение атома лишь квантово-релятивистские поправки.
Между тем последовательное квантово-релятивистское рассмотрение атома как системы с переменным числом частиц на основе диаграмм Фейнмана все ставит на свои места. Только малость постоянной тонкой структуры, определяющей интенсивность электромагнитного взаимодействия, даёт возможность в довольно широких пределах применять нерелятивистскую модель атома, скажем, водорода как системы, состоящей из протона и электрона. Это первое приближение теории возмущений. Последующие приближения, наглядно выражаемые диаграммами Фейнмана, показывают, что с вероятностью в 137 раз меньшей, чем вероятность обнаружить атом водорода как систему, состоящую из протона и электрона, мы можем убедиться в том, что эта система включает в себя еще и электронно-позитронную пару, и еще две, три и т. д. пары частиц, но соответственно со все меньшей (но конечной) вероятностью. Так, атом оказывается постоянно взаимодействующим с вакуумом как исходным состоянием квантованных полей. Но это взаимодействие носит виртуальный характер, хотя и проявляется в экспериментально наблюдаемых эффектах.
Понятие виртуальности тесно связано с тем, что рассматриваемые нами системы являются квантовыми. Время существования виртуальных квантов полей определяется согласно соотношению неопределенностей энергией, соответствующей массе и энергии рождающихся и поглощающихся пар частиц. Поскольку произведение этой энергии на время существования частиц недолжно превышать постоянной Планка, иначе будет нарушен закон сохранения энергии, то чем больше энергия виртуального кванта, тем меньше время его существования. Таким образом, хотя ядро, атом, молекула открыты по отношению к физическому вакууму тех полей, квантами которых являются их элементы, период виртуального взаимодействия мал по сравнению с продолжительностью жизни целого и целое устойчиво. Периодические процессы, постоянно происходящие в устойчивом атоме, если проигнорировать связь атома с физическим вакуумом, действительно происходят в мнимом времени: виртуальные кванты, осуществляющие взаимодействие между электроном и ядром в нерелятивистских моделях с дальнодействием, принципиально не могут существовать в действительности, обмен ими происходит моментально, соответственно время их существования мнимо. Но если идеализацию дальнодействия снять, то внут-
84
реннему времени можно вернуть его комплексный характер: время существования виртуальных квантов полей имеет не только мнимую, но и действительную компоненту, поэтому при добавлении энергии виртуальные электрон и позитрон можно превратить в действительные и увеличить время их жизни.
Таким образом, только учитывая открытость атомной системы по отношению к физическому вакууму, можно теоретически корректно описать его устойчивость как динамическую. Эта открытость, связанная с постоянным виртуальным энергетическим обменом с вакуумом, не может быть названа диссипацией в собственном смысле слова (электроны не теряют энергии), но все же можно, очевидно, по крайней мере метафорически, говорить о «виртуальной диссипации». Это словосочетание применительно к ставшему целому, устойчивому и замкнутому напомнит о динамичности его внутренних процессов, о постоянном воспроизведении становления с точки зрения известного результата.
Рассмотрение ядра, атома, молекулы как динамического целого, являющегося результатом самоорганизации и в то же время обладающего высокой степенью устойчивости, позволяет ставить вопрос о применимости к такому целому понятия тотальности в том аспекте его смысла, который выражает высший уровень целостности.
Необходимым моментом тотальности, по Гегелю, является разворачивание ею единства посредством различия. Эта необходимость различия как условие существования устойчивого целого неожиданно проявляет себя при сравнении микроскопических квантовых систем структурных единиц вещества и макроскопических квантовых систем, проявляющих свойства сверхпроводимости или сверхтекучести. Хотя и в том и в другом случае работает квантовый принцип тождественности и однотипные элементарные частицы принципиально неразличимы, ядра, атомы, молекулы содержат в себе необходимые моменты различия состояний составляющих элементов системы в отличие от макроскопических квантовых системы, образующихся в результате равновесных фазовых переходов второго рода при сверхнизких температурах.
И ядро, и атом, и молекула образованы из частиц, обладающих полуцелым спином, т. е. подчиняющихся принципу Паули и описываемых статистикой Ферми (все такие частицы называют фермионами). Принцип Паули запрещает фермионам занимать один и тот же энергетический уровень в квантовой системе (на каждом разрешен-
85
ном энергетическом уровне могут находиться только два фермиона с антипараллельными спинами). Именно поэтому электроны в атоме распределены по «оболочкам» и на разном расстоянии от ядра, а не находятся все в нижайшем состоянии. Благодаря этому атом устойчив и имеет размеры, значительно превышающие ядерные при всей малости размеров электрона.
Таких различий в состояниях тождественных частиц нет в явлениях сверхпроводимости и сверхтекучести. Наоборот, эти эффекты возможны именно потому, что элементы данных систем обладают целым спином (электроны в случае сверхпроводимости образуют куперовские пары), а значит, подчиняются статистике Бозе (их называют бозонами). Бозоны не подчиняются принципу Паули и могут находиться в одном состоянии в любых количествах. Собственно, сверхнизкие температуры и обеспечивают переход в одинаковое сверхнизкое энергетическое состояние всех элементов системы, что и определяет их когерентность и соответственно возможность описания одной волновой функцией.
Приведенное сравнение не только подчеркивает возможность отнесения категории тотальности скорее к структурным единицам вещества, чем к сверхпроводящим или сверхтекучим макроскопическим квантовым системам. Не менее важно, что оно является еще одним аргументом в пользу неприменимости понятия равновесного фазового перехода к формированию ядра, атома или молекулы.
Становление подобных объектов следует рассматривать как самоорганизацию. Однако результат этой самоорганизации обладает повышенной степенью устойчивости и замкнутости по сравнению с обычными диссипативными структурами, поскольку условия их образования и функ-•ционирования различны. Понятие «диссипативная структура» обозначает структурную устойчивость ставшего целого, открытого по отношению к породившей его среде и воспроизводящего себя в постоянном обмене энергией и веществом со средой. Деление на внутреннее и внешнее здесь весьма условно. Пространственные, временные или пространственно-временные диссипативные структуры (скажем, колебания в химических реакциях или ячейки Бенара) как бы накладываются на элементы среды и процессы, осуществляемые с их участием.
Элементы среды, организованные в части, выполняющие определенные функции по отношению к диссипатив-ной структуре как целому (восходящие и нисходящие потоки, образующие ячейки Бенара, например, обеспечи-
86
вают наиболее эффективный перенос тепла в слое Жидкости), не закреплены за этими частями и при изменении условий мгновенно перестраивают свое движение, что может быть связано с утратой согласованности, т. е. разрушением диссипативной структуры, или с образованием другой диссипативной структуры. Нельзя не заметить, что живой организм, хотя и связан со средой как открытая диссипативная структура, является значительно более замкнутым целым. Внутреннее и внешнее четко различены даже в одноклеточном организме, хотя ряд элементов среды (очень избирательно) может быть поглощен и выделен при питании и дыхании.
Замкнутость и избирательность в восприятии воздействий характерны и для таких «виртуальных диссипативных структур», как ядро, атом или молекула. Мы далеки от мысли относить выражение «виртуальная диссипативная структура» к живому организму (по крайней мере, без предварительного исследования). Своим сопоставлением живых организмов и структурных единиц вещества, проявивших так много общих черт, мы стремились еще раз подкрепить наше категориальное определение целостности тех и других как тотальности.
Методологическое значение тонкостей рассматриваемых нами категориальных различений состоит в том, что за счет их проведения создается возможность не смешивать разные виды диссипативных структур и осознавать, что хотя живые организмы и являются диссипативными структурами как открытые системы, но степень их целостности значительно выше, чем у обычно рассматриваемых диссипативных структур, в том числе и тех, которые выполняют определенные функции в организме как целом. Живые организмы — это особые диссипативные структуры, устойчивая целостность которых сопоставима только с квантовой целостностью структурных единиц вещества. Жизнь, таким образом, оказывается одним из уровней структурной организации материи, даже будучи взята в физическом аспекте ее существования.
Что касается применения для характеристики целостности выделенных нами самоорганизующихся систем понятия тотальности, то здесь необходима еще одна оговорка. До сих пор мы применяли это понятия лишь в одном аспекте, обозначая с его помощью высший уровень целостности. Но такое понимание тотальности слишком узко по сравнению со смыслом, придаваемым этой категории диалектикой. Та тотальность отдельного круга, благодаря которой он «прорывает границу своей определенности и
87
служит основанием более обширной сферы» [25, 100], не есть свойство только данного круга. Она оказывается возможной только потому, что тотальность каждого из кругов возможна как момент целого. Не зря по отношению к явлениям Гегель использует понятие тотальности для характеристики мира явлений [25, 298] .Действительно, и в нашей попытке последовательного применения категории «тотальность» к живому организму или структурным единицам вещества рассмотрение этих объектов как самоорганизующихся, в развитии, естественно приводило к учету их всеобщих связей. Так, существование живого организма неотделимо от взаимодействия со средой; от существования в экологической нише, т, е. во взаимодействии с другими видами; в популяции, т. е. во взаимодействии с особями своего вида; на основе генофонда, т. е. на основе исторического развития жизни на Земле, развития биосферы как мира живого.
А существование ядра, атома, молекулы неотделимо oт их взаимодействия с физическим вакуумом, с объектами своего уровня организации, от существования того целого, элементом которого они выступают. Элементарные частицы как генетическая и структурная основа всех структурных образований связывают их существование с историей становления Вселенной, в процессе которого они и появились.
Таким образом, мыслить тотальность отдельных объектов конкретного многообразия мирового целого невозможно вне рассмотрения тотальности самого этого целого. Логика категориального анализа подводит нас к теме «Мир как целое».