Лекция №1 история развития средств вычислительной техники

Вид материалаЛекция

Содержание


Простейшие ручные приспособления
Механические приспособления
1623 год − немецкий ученый Вильгельм Шиккард
1673 г. немецкий философ и математик Готфрид Вильгельм Лейбниц
1820 году, когда француз Чарльз Калмар
Автоматизация вычислений
Ада Лавлейс
Аналитической машины
1888 году американский инженер Герман Холлерит
1940-х годах
1946 г. По заказу Армии США был создан первый широкомасштабный электронный цифровой компьютер ЭНИАК
МЭСМ (малая электронная счётная машина) была создана в 1951 году
1964г. сотрудник Стэнфордского исследовательского центра Дуглас Энгельбарт
1976г. выпустила фирма Apple
1990-настоящее время
Поколения ЭВМ
Первое поколение. 1950-1960-е годы
Второе поколение ЭВМ. 1960-1970-е годы
Третье поколение ЭВМ: 1970-1980-е годы
IV поколение. 1980-1990-е годы
...
Полное содержание
Подобный материал:




Лекция №1


ИСТОРИЯ РАЗВИТИЯ СРЕДСТВ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Для автоматизации работы с данными используют средства вычислительной техники.

Вычислительная техника (ВТ) − это совокупность устройств, предназначенных для автоматизированной обработки данных.

Вычислительная система (ВС) – это конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка.

Центральным устройством большинства ВС является компьютер (ЭВМ).

Компьютер (англ. computer — «вычислитель»), ЭВМ (электронная вычислительная машина) - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

Простейшие ручные приспособления

История компьютера тесным образом связана с попытками человека облегчить, автоматизировать большие объёмы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось устройство – абак. Абак (греч. αβαξ, abákion, лат. abacus − доска) − это счётная доска, простейшее счётное устройство, применявшееся для арифметических вычислений приблизительно с IV века до н.э. в Древней Греции, Древнем Риме. В Европе абак применялся до XVIII века.

В России ещё в средние века (16-17 вв.) на основе абака было разработано другое приспособление – русские счёты.

Механические приспособления

Механизация вычислительных операций началась в XVII веке. На первом этапе для создания механических вычислительных устройств использовались механизмы, аналогичные часовым.

В 1623 год − немецкий ученый Вильгельм Шиккард разработал первое в мире механическое устройство («суммирующие часы») для выполнения операций сложения и вычитания шестиразрядных десятичных чисел. Было ли устройство реализовано при жизни изобретателя, достоверно неизвестно, но в 1960 году оно было воссоздано по чертежам и подтвердило свою работоспособность.

В 1642 году французский механик Блез Паскаль сконструировал первое в мире механическое цифровое вычислительное устройство («Паскалин»), построенное на основе зубчатых колес. Оно могло суммировать и вычитать пятиразрядные десятичные числа, а последние модели оперировали числами с восемью десятичными разрядами.

В 1673 г. немецкий философ и математик Готфрид Вильгельм Лейбниц создал механический калькулятор, который при помощи двоичной системы счисления выполнял умножение, деление, сложение и вычитание. Операции умножения и деления выполнялись путём многократного повторения операций сложения и вычитания.

Однако широкое распространение вычислительные аппараты получили только в 1820 году, когда француз Чарльз Калмар изобрёл машину, которая могла производить четыре основных арифметических действия. Машину Калмара назвали арифмометр. Благодаря своей универсальности арифмометры использовались довольно длительное время до 60-х годов ХХ века.

Автоматизация вычислений

Идея автоматизации вычислительных операций пришла из часовой промышленности. Старинные монастырские башенные часы были построены так, чтобы в заданное время включать механизм, связанный с системой колоколов.

В 1833 году английский ученый, профессор Кембриджского университета Чарльз Беббидж разработал проект аналитической машины, которая имела черты современного компьютера. Это был гигантский арифмометр с программным управлением, арифметическим и запоминающим устройствами. Оно имело устройство для ввода информации, блок управления, запоминающее устройство и устройство вывода результатов.

Сотрудницей и помощницей Ч. Беббиджа во многих его научных изысканиях была леди Ада Лавлейс (урожденная Байрон).

Она разработала первые программы для машины и предвосхитила основы современного программирования для цифровых вычислительных машин с программным управлением. Заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

Она предсказала появление современных компьютеров как многофункциональных машин не только для вычислений, но и для работы с графикой, звуком. В середине 70-х годов двадцатого столетия министерство обороны США официально утвердило название единого языка программирования американских вооруженных сил. Язык носит название Ada. День программиста отмечается в день рождения Ады Лавлейс 10 декабря.

Особенностью Аналитической машины стало то, что здесь впервые был реализован принцип разделения информации на команды и данные. Для ввода и вывода данных Бэббидж предлагал использовать перфокарты-листы из плотной бумаги с информацией, наносимой с помощью отверстий.

В 1888 году американский инженер Герман Холлерит сконструировал первую электромеханическую счётную машину. Эта машина, названная табулятором, могла считывать и сортировать статистические записи, закодированные на перфокартах. Для работы этой машины использовалось электричество. В 1890 изобретение Холлерита было использовано в 11-ой американской переписи населения. Работа, которую 500 сотрудников выполняли в течение семи лет, Холлерит с 43 помощниками на 43 табуляторах выполнил за один месяц.

Дальнейшее развитие науки и техники позволили в 1940-х годах построить первые вычислительные машины. В 1944 г. американский инженер Говард Эйкен при поддержке фирмы Ай-Би-Эм (IBM) сконструировал компьютер для выполнения баллистических расчетов. Этот компьютер, названный «Марк 1», по площади занимал примерно половину футбольного поля и включал более 800 километров проводов, около 750 тыс.деталей, 3304 реле. «Марк-1» был основан на использовании электромеханических реле и оперировал десятичными числами, закодированными на перфоленте. Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух 23-разрядных чисел ей было необходимо 4 секунды.

Но электромеханические реле работали недостаточно быстро. В 1946 г. По заказу Армии США был создан первый широкомасштабный электронный цифровой компьютер ЭНИАК (ENIAC - электронный числовой интегратор и вычислитель), который можно было перепрограммировать для решения полного диапазона задач. Разработали его американские ученые Джон Уильям Мокли и Джон Преспер Экерт. В ЭНИАКе в качестве основы компонентной базы электромеханические реле были заменены вакуумными лампами. Всего комплекс включал 17468 ламп, 7200 кремниевых диодов, 1500 реле, 70000 резисторов и 10000 конденсаторов. Потребляемая мощность – 150 кВт по тем временам было достаточно для освещения большого города. Вычислительная мощность – 300 операций умножения или 5000 операций сложения в секунду. Вес – 27 тонн, более 30 метров. Вычисления проводились в десятичной системе. ЭНИАК использовался для расчета баллистических таблиц, предсказания погоды, расчетов в области атомной энергетики, аэродинамики, изучения космоса.

В СССР вычислительная машина МЭСМ (малая электронная счётная машина) была создана в 1951 году под руководством академика Сергея Алексеевича Лебедева. Машина вычисляла факториалы натуральных чисел и решала уравнения параболы. Одновременно Лебедев работал над созданием БЭСМ - быстродействующей электронной счётной машины, разработка которой была завершена в 1953 году.

В 1971 году фирмой Intel (США) был создан первый микропроцессор - программируемое логическое устройство, изготовленное по технологии СБИС (сверхбольших интегральных схем).

В 1964г. сотрудник Стэнфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши-манипулятора, но только четыре года спустя мышка была показана на компьютерной конференции в Сан-Франциско.

Первый персональный компьютер (ПК) в 1976г. выпустила фирма Apple; в СССР ПК появились в 1985г.

Таблица 1. Поколения ЭВМ


Показатель

Поколения ЭВМ

Первое

1950-1960-е годы

Второе

1960-1970-е годы

Третье

1970-1980-е г.

Четвертое

1980-1990-е годы

Пятое

1990-настоящее время

Элементная база процессора

Электронные лампы

Полупроводники (Транзисторы)

Малые интегральные схемы (МИС)

Большие ИС (БИС) и Сверхбольшие ИС (СБИС)

Оптоэлектроника

Криоэлектроника (лазеры, голография)

Элементная база ОЗУ

Электронно-лучевые трубки

Ферритовые сердечники

Кремниевые кристаллы

БИС и СБИС

СБИС

Основные устройства ввода

Пульт, перфокарточный, перфоленточный ввод

Алфавитно-цифровой дисплей, клавиатура

Цветной графический дисплей, клавиатура, “мышь” и др.

Цветной графический дисплей, сканер, клавиатура, устройства голосовой связи с ЭВМ

Основные устройства вывода

Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод

Графопостроитель, принтер




Внешняя память

Магнитные ленты, барабаны, перфокарт

Магнитный диск

Перфоленты, магнитный диск

Магнитные и оптические диски




Максимальная емкость ОЗУ, байт

101

102

104

105 - 107

108 (?)

Максимальное быстродействие процессора (оп/с)

104

106

107

108 - 109

+Многопроцессорность

1012

+Многопроцессорность

Языки программирования

Универсальные языки программирования, трансляторы (машинный код)

Пакетные операционные системы, оптимизирующие трансляторы

(Ассемблер, Фортран)

Процедурные языки высокого уровня (ЯВУ)

Новые процедурные ЯВУ и Непроцедурные ЯВУ

Новые непроцедурные ЯВУ

Цель использования ЭВМ

Научно-технические расчеты

Технические и экономические расчеты

Управление и экономические расчеты

Телекоммуникации, информационное обслуживание

Использование элементов искусственного интеллекта и распознавание зрительных и звуковых образов

Поколения ЭВМ

ЭВМ принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений - за её короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Определяющими признаками при отнесении ЭВМ к тому или иному поколению являются их элементная база (из каких в основном элементов они построены), быстродействие, емкость памяти, способы управления и переработки информации.


Первое поколение. 1950-1960-е годы

Компьютеры на электронных вакуумных лампах (диодах и триодах), а в качестве оперативных запоминающих устройств использовались электронно-лучевые трубки, в качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы.

Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины.

Машины предназначались для решения сравнительно несложных научно-технических задач. Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы.

Быстродействие их не превышало 2-3 тысяч операций в секунду, емкость оперативной памяти - 2048 машинных слов длиной 48 двоичных знаков. Использовались в основном для научных расчетов.

В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках.

ЭНИАК, МЭСМ, БЭСМ и первые модели ЭВМ "Минск" и "Урал".


Второе поколение ЭВМ. 1960-1970-е годы

Элементной базой машин этого поколения были полупроводниковые элементы (транзисторы). Транзисторы (твердые диоды и триоды) заменили электронные лампы в процессорах, а ферритовые (намагничиваемые) сердечники – электронно-лучевые трубки в оперативных запоминающих устройствах. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве.

Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность.

Скорость ЭВМ возросла до сотен тысяч операций в секунду, а память – до десятков тысяч машинных слов. Создаются долговременные запоминающие устройства на магнитных лентах. Начали применять языки программирования высокого уровня, такие как Фортран.

В 1964 году появился первый монитор для компьютеров - IBM 2250. Это был монохромный дисплей с экраном 12 × 12 дюймов и разрешением 1024 × 1024 пикселов. Он имел частоту кадровой развертки 40 Гц.


Третье поколение ЭВМ: 1970-1980-е годы

Элементная база ЭВМ - малые интегральные схемы (МИС), что привело к дальнейшему увеличению скорости до миллиона операций в секунду и памяти до сотен тысяч слов. Машины предназначались для широкого использования в различных областях науки и техники.

ЭВМ третьего поколения также характеризуется крупнейшими сдвигами в архитектуре ЭВМ, их программном обеспечении, организации взаимодействия человека с машиной. Это, прежде всего наличие развитой конфигурации внешних устройств (алфавитно-цифровые терминалы, графопостроители, магнитные диски (30 см в диаметре) и т.п.), развитая операционная система.

В период машин третьего поколения произошел крупный сдвиг в области применения ЭВМ. Если раньше ЭВМ использовались в основном для научно-технических расчетов, то в 60-70-е годы первое место стала занимать обработка символьной информации, в основном экономической.


IV поколение. 1980-1990-е годы

Переход к машинам четвертого поколения – ЭВМ на больших интегральных схемах (БИС) – происходил во второй половине 70-х годов и завершился приблизительно к 1980 г. Теперь на одном кристалле размером 1 см2 стали размещаться сотни тысяч электронных элементов. Скорость и объем памяти возросли в десятки тысяч раз по сравнению с машинами первого поколения и составили примерно 109 операций в секунду и 107 слов соответственно.

Наиболее крупным достижением, связанным с применением БИС, стало создание микропроцессоров, а затем на их основе микро-ЭВМ. Если прежние поколения ЭВМ требовали для своего расположения специальных помещений, системы вентиляции, специального оборудования для электропитания, то требования, предъявляемые к эксплуатации микро-ЭВМ, ничем не отличаются от условий эксплуатации бытовых приборов. При этом они имеют достаточно высокую производительность, экономичны в эксплуатации и дешевы.

Микро-ЭВМ используются в измерительных комплексах, системах числового программного управления, в управляющих системах различного назначения.

Дальнейшее развитие микро-ЭВМ привело к созданию персональных компьютеров (ПК), широкое распространение которых началось с 1975 г., когда фирма IBM выпустила свой первый персональный компьютер IBM PC.

В период машин четвертого поколения стали также серийно производиться супер-ЭВМ. В нескольких серийных моделях была достигнута производительность свыше 1 млрд. операций в секунду.

К числу наиболее значительных разработок четвертого поколения относится ЭВМ «Крей-3».

Примером отечественной суперЭВМ является многопроцессорный вычислительный комплекс «Эльбрус».

V поколение. 1990-настоящее время

С 90-х годов в истории развития вычислительной техники наступила пора пятого поколения. Высокая скорость выполнения арифметических вычислений дополняется высокими скоростями логического вывода.

Сверхбольшие интегральные схемы повышенной степени интеграции, использование оптоэлектронных принципов (лазеры, голография).

Способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Используются модели и средства, разработанные в области искусственного интеллекта. Архитектура содержит несколько блоков: блок общения – обеспечивает интерфейс между пользователем и ЭВМ на естественном языке; база знаний – хранятся знания, накопленные человечеством в различных предметных областях; решатель - организует подготовку программы решения задачи на основании знаний, получаемых из базы знаний и исходных данных, полученных из блока общения. Ядро вычислительной системы составляет ЭВМ высокой производительности.

В связи с появлением новой базовой структуры ЭВМ в машинах пятого поколения широко используются модели и средства, разработанные в области искусственного интеллекта.

Классификация ЭВМ

Существует достаточно много систем классификации по различным признакам.

I. Классификация по назначению:

1) СуперЭВМ предназначены для решения крупномасштабных вычислительных задач, для обслуживания крупнейших информационных банков данных. Это очень мощные компьютеры с производительностью свыше 100 мегафлопов (1 мегафлоп — миллион операций с плавающей точкой в секунду). Они называются сверхбыстродействующими. Эти машины представляют собой многопроцессорные и (или) многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Различают суперкомпьютеры среднего класса, класса выше среднего и переднего края (high end).

2) Большие ЭВМ - для комплектования ведомственных, территориальных и региональных вычислительных центров. Мэйнфреймы предназначены для решения широкого класса научно-технических задач и являются сложными и дорогими машинами. Их целесообразно применять в больших системах при наличии не менее 200 — 300 рабочих мест.

3) Средние ЭВМ - широкого назначения для управления сложными технологическими производственными процессами. ЭВМ этого типа могут использоваться и для управления распределенной обработкой информации в качестве сетевых серверов.

4) Персональные и профессиональные ЭВМ, позволяющие удовлетворять индивидуальные потребности пользователей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня.

5) Встраиваемые микропроцессоры, осуществляющие автоматизацию управления отдельными устройствами и механизмами.

II. Классификация ПК по типоразмерам:
  1. Настольные (desktop) - используются для оборудования рабочих мест, отличаются простотой изменения конфигурации. Наиболее распространены.
  2. Портативные – удобны для транспортировки, можно работать при отсутствии рабочего места.

Основные разновидности портативных компьютеров:

Laptop (наколенник, от lap> — колено и top — поверх). По размерам близок к обычному портфелю. По основным характеристикам (быстродействие, память) примерно соответствует настольным ПК. Сейчас компьютеры этого типа уступают место ещё меньшим.

Notebook (блокнот, записная книжка). По размерам он ближе к книге крупного формата. Имеет вес около 3 кг. Является переносным персональным компьютером. Он имеет компактные габариты и встроенные аккумуляторы, позволяющие работать без сетевого напряжения.

Palmtop (наладонник) — это самый маленький ПК. Он не имеет внешней памяти на магнитных дисках, она заменена на энергозависимую электронную память. Эта память может перезаписываться при помощи линии связи с настольным компьютером. Карманный компьютер можно использовать как словарь-переводчик или записную книжку

III. Классификация по условиям эксплуатации:

По условиям эксплуатации компьютеры делятся на два типа:
  1. офисные (универсальные) – на их основе можно собирать вычислительные системы произвольного состава;
  2. специализированные – предназначены для решения конкретного круга задач (например, бортовые компьютеры автомобилей, самолетов).

Основные принципы функционирования ПК

Исторически компьютер появился как машина для вычислений и назывался электронной вычислительной машиной – ЭВМ. Общие принципы работы универсальных вычислительных устройств были сформулированы известным американским математиком Джоном фон Нейманом в 1946 году:
  1. Любая ЭВМ для выполнения своих функций должна иметь минимальный набор функциональных блоков:
    • АЛУ – арифметическое логическое устройство. Преобразует информацию, выполняя сложение, вычитание и основные логические операции «И», «ИЛИ», «НЕ».
    • УУ – устройство управления. Организует процесс выполнения программ.
    • ОЗУ – оперативное запоминающее устройство (память), состоящее из перенумерованных ячеек. Хранит данные, адреса и команды, обладает высокой скоростью записи и чтения чисел.
    • УВВ – устройство ввода-вывода. Получают информацию извне, выводят её получателю.


Это классическая структура вычислительной машины, на основе которой уже более полувека создаются ЭВМ.

В современных компьютерах объединены АЛУ и УУ в одной сверхбольшой интегральной схеме (микропроцессор). Уменьшение габаритов ОЗУ позволило разместить микропроцессор и ОЗУ на одной электронной плате (материнская). Все связи между отдельными устройствами объединены в пучок параллельных проводов (системная шина).
  1. Информация кодируется в двоичной форме.
  2. Алгоритм представляется в форме последовательности команд, совокупность которых называется программой.
  3. Программы и данные хранятся в одной и той же памяти.


Существует достаточно много систем классификации компьютеров. Мы рассмотрим лишь некоторые из них, сосредоточившись на тех, о которых наиболее часто упоминают в доступной технической литературе и средствах массовой информации.

Классификация по назначению

Классификация по назначению — один из наиболее ранних методов классификации. Он связан с тем, как компьютер применяется. По этому принципу различают большие ЭВМ (электронно-вычислительные машины), мини-ЭВМ, микро-ЭВМ и персональные компьютеры, которые, в свою очередь, подразделяют на массовые, деловые, портативные, развлекательные и рабочие станции.

Большие ЭВМ.

Это самые мощные компьютеры. Их применяют для обслуживания очень крупных организаций и даже целых отраслей народного хозяйства. За рубежом компьютеры этого класса называют мэйнфреймами (mainframe). В России за ними закрепился термин большие ЭВМ. Штат обслуживания большой ЭВМ составляет до многих десятков человек. На базе таких суперкомпьютеров создают вычислительные центры, включающие в себя несколько отделов или групп.

Центральный процессор — основной блок ЭВМ, в котором непосредственно и происходит обработка данных и вычисление результатов. Обычно центральный процессор представляет собой несколько стоек аппаратуры и размещается в отдельном помещении, в котором соблюдаются повышенные требования по температуре, влажности, защищенности от электромагнитных помех, пыли и дыма.
Группа системного программирования занимается разработкой, отладкой и внедрением программного обеспечения, необходимого для функционирования самой вычислительной системы. Работников этой группы называют системными программистами. Они должны хорошо знать техническое устройство всех компонентов ЭВМ, поскольку их программы предназначены в первую очередь для управления физическими устройствами. Системные программы обеспечивают взаимодействие программ более высокого уровня с оборудованием, то есть группа системного программирования обеспечивает программно-аппаратный интерфейс вычислительной системы.
Группа прикладного программирования занимается созданием программ для выполнения конкретных операций с данными. Работников этой группы называют прикладными программистами. В отличие от системных программистов им не надо знать техническое устройство компонентов ЭВМ, поскольку их программы работают не с устройствами, а с программами, подготовленными системными программистами. С другой стороны, с их программами работают пользователи, то есть конкретные исполнители работ. Поэтому можно говорить о том, что группа прикладного программирования обеспечивает пользовательский интерфейс вычислительной системы.
Группа подготовки данных занимается подготовкой данных, с которыми будут работать программы, созданные прикладными программистами. Во многих случаях сотрудники этой группы сами вводят данные с помощью клавиатуры, но они могут выполнять и преобразование готовых данных из одного вида в другой. Так, например, они могут получать иллюстрации, нарисованные художниками на бумаге, и преобразовывать их в электронный вид с помощью специальных устройств, называемых сканерами.
Группа технического обеспечения занимается техническим обслуживанием всей вычислительной системы, ремонтом и наладкой устройств, а также подключением новых устройств, необходимых для работы прочих подразделений.
Группа информационного обеспечения обеспечивает технической информацией все прочие подразделения вычислительного центра по их заказу. Эта же группа создает и хранит архивы ранее разработанных программ и накопленных данных. Такие архивы называют библиотеками программ или банками данных.
Отдел выдачи данных получает данные от центрального процессора и преобразует их в форму, удобную для заказчика. Здесь информация распечатывается на печатающих устройствах (принтерах) или отображается на экранах дисплеев.
Большие ЭВМ отличаются высокой стоимостью оборудования и обслуживания, поэтому работа таких суперкомпьютеров организована по непрерывному циклу. Наиболее трудоемкие и продолжительные вычисления планируют на ночные часы, когда количество обслуживающего персонала минимально. В дневное время ЭВМ исполняет менее трудоемкие, но более многочисленные задачи. При этом для повышения эффективности компьютер работает одновременно с несколькими задачами и, соответственно, с несколькими пользователями. Он поочередно переключается с одной задачи на другую и делает это настолько быстро и часто, что у каждого пользователя создается впечатление, будто компьютер работает только с ним. Такое распределение ресурсов вычислительной системы носит название принципа разделения времени.

Мини-ЭВМ

От больших ЭВМ компьютеры этой группы отличаются уменьшенными размерами и, соответственно, меньшей производительностью и стоимостью. Такие компьютеры используются крупными предприятиями, научными учреждениями и некоторыми высшими учебными заведениями, сочетающими учебную деятельность с научной.
Мини-ЭВМ часто применяют для управления производственными процессами. Например, в механическом цехе компьютер может поддерживать ритмичность подачи заготовок, узлов и комплектующих на рабочие места, управлять гибкими автоматизированными линиями и промышленными роботами, собирать информацию с инструментальных постов технического контроля и сигнализировать о необходимости замены изношенных инструментов и приспособлений, готовить данные для станков с числовым программным управлением, а также своевременно информировать цеховые и заводские службы о необходимости выполнения мероприятий по переналадке оборудования.
Тот же компьютер может сочетать управление производством с другими задачами. Например, он может помогать экономистам в осуществлении контроля за себестоимостью продукции, нормировщикам в оптимизации времени технологических операций, конструкторам в автоматизации проектирования станочных приспособлений, бухгалтерии в осуществлении учета первичных документов и подготовки регулярных отчетов для налоговых органов. Для организации работы с мини-ЭВМ тоже требуется специальный вычислительный центр, хотя и не такой многочисленный, как для больших ЭВМ.

Микро-ЭВМ

Компьютеры данного класса доступны многим предприятиям. Организации, использующие микро-ЭВМ, обычно не создают вычислительные центры. Для обслуживания такого компьютера им достаточно небольшой вычислительной лаборатории в составе нескольких человек. В число сотрудников вычислительной лаборатории обязательно входят программисты, хотя напрямую разработкой программ они не занимаются. Необходимые системные программы обычно покупают вместе с микро-ЭВМ, а разработку нужных прикладных программ заказывают более крупным вычислительным центрам или специализированным организациям.
Программисты вычислительной лаборатории занимаются внедрением приобретенного или заказанного программного обеспечения, выполняют его доводку и настройку, согласовывают его работу с другими программами и устройствами компьютера. Хотя программисты этой категории и не разрабатывают системные и прикладные программы, они могут вносить в них изменения, создавать или изменять отдельные фрагменты. Это требует высокой квалификации и универсальных знаний. Программисты, обслуживающие микро-ЭВМ, часто сочетают в себе качества системных и прикладных программистов одновременно.
Несмотря на относительно невысокую производительность по сравнению с большими ЭВМ, микро-ЭВМ находят применение и в крупных вычислительных центрах. Там им поручают вспомогательные операции, для которых нет смысла использовать дорогие суперкомпьютеры. К таким задачам, например, относится предварительная подготовка данных.

Персональные компьютеры (ПК)

Эта категория компьютеров получила особо бурное развитие в течение последних двадцати лет. Из названия видно, что такой компьютер предназначен для обслуживания одного рабочего места. Как правило, с персональным компьютером работает один человек. Несмотря на свои небольшие размеры и относительно невысокую стоимость, современные персональные компьютеры обладают немалой производительностью. Многие современные персональные модели превосходят большие ЭВМ 70-х годов, мини-ЭВМ 80-х годов и микро-ЭВМ первой половины 90-х годов. Персональный компьютер (Personal Computer, PC) вполне способен удовлетворить большинство потребностей малых предприятий и отдельных лиц.
Особенно широкую популярность персональные компьютеры получили после 1995 года в связи с бурным развитием Интернета. Персонального компьютера вполне достаточно для использования всемирной сети в качестве источника научной, справочной, учебной, культурной и развлекательной информации. Персональные компьютеры являются также удобным средством автоматизации учебного процесса по любым дисциплинам, средством организации дистанционного (заочного) обучения и средством организации досуга. Они вносят большой вклад не только в производственные, но и в социальные отношения. Их нередко используют для организации надомной трудовой деятельности, что особенно важно в условиях безработицы.
До последнего времени модели персональных компьютеров условно рассматривали в двух категориях: бытовые ПК и профессиональные ПК. Бытовые модели, как правило, имели меньшую производительность, но в них были приняты особые меры для работы с цветной графикой и звуком, чего не требовалось для профессиональных моделей. В связи с достигнутым в последние годы резким удешевлением средств вычислительной техники, границы между профессиональными и бытовыми моделями в значительной степени стерлись, и сегодня в качестве бытовых нередко используют высокопроизводительные профессиональные модели, а профессиональные модели, в свою очередь, комплектуют устройствами для воспроизведения мультимедийной информации, что ранее было характерно для бытовых устройств.

Под термином мультимедиа подразумевается сочетание нескольких видов данных в одном документе (текстовые, графические, музыкальные и видеоданные) или совокупность устройств для воспроизведения этого комплекса данных.
Начиная с 1999 года в области персональных компьютеров начинает действовать международный сертификационный стандарт — спецификация PC99. Он регламентирует принципы классификации персональных компьютеров и оговаривает минимальные и рекомендуемые требования к каждой из категорий. Новый стандарт устанавливает следующие категории персональных компьютеров:
  • Consumer PC (массовый ПК);
  • Office PC (деловой ПК);
  • Mobile PC (портативный ПК);
  • Workstation PC (рабочая станция);
  • Entertainmemt PC (развлекательный ПК).

Согласно спецификации PC99 большинство персональных компьютеров, присутствующих в настоящее время на рынке, попадают в категорию массовых ПК. Для деловых ПК минимизированы требования к средствам воспроизведения графики, а к средствам работы со звуковыми данными требования вообще не предъявляются. Для портативных ПК обязательным является наличие средств для создания соединений удаленного доступа, то есть средств компьютерной связи. В категории рабочих станций повышены требования к устройствам хранения данных, а в категории развлекательных ПК — к средствам воспроизведения графики и звука.

Другие виды классификации компьютеров

Классификация по уровню специализации. По уровню специализации компьютеры делят на универсальные и специализированные. На базе универсальных компьютеров можно собирать вычислительные системы произвольного состава (состав компьютерной системы называется конфигурацией). Так, например, один и тот же персональный компьютер можно использовать для работы с текстами, музыкой, графикой, фото- и видеоматериалами.
Специализированные компьютеры предназначены для решения конкретного круга задач. К таким компьютерам относятся, например, бортовые компьютеры автомобилей, судов, самолетов, космических аппаратов. Бортовые компьютеры управляют средствами ориентации и навигации, осуществляют контроль за состоянием бортовых систем, выполняют некоторые функции автоматического управления и связи, а также большинство функций оптимизации параметров работы систем объекта (например, оптимизацию расхода топлива объекта в зависимости от конкретных условий движения). Специализированные мини-ЭВМ, ориентированные на работу с графикой, называют графическими станциями. Их используют при подготовке кино- и видеофильмов, а также рекламной продукции. Специализированные компьютеры, объединяющие компьютеры предприятия в одну сеть, называют файловыми серверами. Компьютеры, обеспечивающие передачу информации между различными участниками всемирной компьютерной сети, называют сетевыми серверами.
Во многих случаях с задачами специализированных компьютерных систем могут справляться и обычные универсальные компьютеры, но считается, что использование специализированных систем все-таки эффективнее. Критерием оценки эффективности выступает отношение производительности оборудования к величине его стоимости.
Классификация по типоразмерам. Персональные компьютеры можно классифицировать по типоразмерам. Так, различают настольные (desktop), портативные (notebook) и карманные (palmtop) модели.
Настольные модели распространены наиболее широко. Они являются принадлежностью рабочего места. Эти модели отличаются простотой изменения конфигурации за счет несложного подключения дополнительных внешних приборов или установки дополнительных внутренних компонентов. Достаточные размеры корпуса в настольном исполнении позволяют выполнять большинство подобных работ без привлечения специалистов, а это позволяет настраивать компьютерную систему оптимально для решения именно тех задач, для которых она была приобретена.
Портативные модели удобны для транспортировки. Их используют бизнесмены, коммерсанты, руководители предприятий и организаций, проводящие много времени в командировках и переездах. С портативным компьютером можно работать при отсутствии рабочего места. Особая привлекательность портативных компьютеров связана с тем, что их можно использовать в качестве средства связи. Подключив такой компьютер к телефонной сети, можно из любой географической точки установить обмен данными между ним и центральным компьютером своей организации. Так производят обмен данными, передачу приказов и распоряжений, получение коммерческих данных, докладов и отчетов. Для эксплуатации на рабочем месте портативные компьютеры не очень удобны, но их можно подключать к настольным компьютерам, используемым стационарно.
Карманные модели выполняют функции «интеллектуальных записных книжек». Они позволяют хранить оперативные данные и получать к ним быстрый доступ. Некоторые карманные модели имеют жестко встроенное программное обеспечение, что облегчает непосредственную работу, но снижает гибкость в выборе прикладных программ.
Классификация по совместимости. В мире существует множество различных видов и типов компьютеров. Они выпускаются разными производителями, собираются из разных деталей, работают с разными программами. При этом очень важным вопросом становится совместимость различных компьютеров между собой. От совместимости зависит взаимозаменяемость узлов и приборов, предназначенных для разных компьютеров, возможность переноса программ с одного компьютера на другой и возможность совместной работы разных типов компьютеров с одними и теми же данными,
Аппаратная совместимость. По аппаратной совместимости различают так называемые аппаратные платформы. В области персональных компьютеров сегодня наиболее широко распространены две аппаратные платформы — IBM PC и Apple Macintosh. Кроме них существуют и другие платформы, распространенность которых ограничивается отдельными регионами или отдельными отраслями. Принадлежность компьютеров к одной аппаратной платформе повышает совместимость между ними, а принадлежность к разным платформам — понижает.
Кроме аппаратной совместимости существуют и другие виды совместимости: совместимость на уровне операционной системы, программная совместимость, совместимость на уровне данных.
Классификация по типу используемого процессора. Процессор — основной компонент любого компьютера. В электронно-вычислительных машинах это специальный блок, а в персональных компьютерах — специальная микросхема, которая выполняет все вычисления в компьютере. Даже если компьютеры принадлежат одной аппаратной платформе, они могут различаться по типу используемого процессора. Основные типы процессоров для платформы IBM PC мы рассмотрим в соответствующем разделе, а здесь укажем на то, что тип используемого процессора в значительной (хотя и не в полной мере) характеризует технические свойства компьютера.