От лат evaporo испаряю и греч grapho пишу), метод получения изображений объектов в их собственном (обычно ик) тепловом излучении. Предложен нем
Вид материала | Документы |
- Реферат по русскому языку на тему: «Типы словарей», 284.65kb.
- Метод распознавания изображений гистологических препаратов в задачах медицинской диагностики, 31.25kb.
- Конспект лекций для 16-и часового курса начертальная геометрия издание 2-ое, 578.52kb.
- Обработка и передача изображений, 243.48kb.
- Социоло́гия (от лат socius общественный; др греч. λόγος мысль, причина) наука о закономерностях, 85.75kb.
- Isbn 5-7262-0634 нейроинформатика 2006, 165.42kb.
- М. В. Лычагин Зав кафедрой д э. н., профессор, 986.65kb.
- Предложен метод неразрушающего акустического контроля многофазных макрооднородных композитных, 14.58kb.
- От греч autos -сам, bios жизнь, grapho пишу, лит прозаический жанр; как правило, последовательное, 2051.5kb.
- М. В. Корытова научный руководитель Р. Т. Файзуллин, д т. н., профессор Омский государственный, 26.14kb.
Св-ва Э. п. удобно описывать в терминах кинетич. теории газов. В ПП, когда Э. п. относительно мало, газ Э. п. хорошо описывается Больцмана статистикой. В металлах Э. п. образуют вырожденный ферми-газ при всех темп-рах (см. Вырожденный газ). Для описания вз-ствий между Э. п. используют теорию ферми-жидкости.
• См. лит. при ст. Твёрдое тело.
Э. М. Эпштейн.
ЭЛЕКТРООПТИКА, раздел оптики, в к-ром изучаются изменения оптич. свойств среды под действием электрич. поля и вызванные этими изменениями особенности вз-ствия оптического излучения (света) со средой, помещённой в поле. Наложение электрич. поля на свободные атомы или др. квантованные системы приводит к снятию вырождения и расщеплению энергетических уровней, пропорциональному квадрату напряжённости поля или (в более сильных полях) его первой степени. В результате это-
892
то линии испускания и поглощения распадаются на ряд компонент, отличающихся не только частотой, но и поляризацией (см. Штарка эффект); несовпадение поглощений для разл. поляризаций света приводит к наведённому полем дихроизму. Кроме того, поскольку каждой линии поглощения соответствует своя дисперсионная кривая, несовпадение последних для разл. поляризаций света связано с анизотропией электронной поляризуемости и проявляется в малоинерционном (10-13—10-14 с) наведённом электрич. полем двулучепреломлении среды (электрический Керра эффект, Поккельса эффект).
Другой механизм влияния электрич. поля на оптич. свойства в-ва связан с определённой ориентацией в поле молекул, обладающих постоянным дипольным моментом, или анизотропией поляризуемости. В результате у первоначально изотропного ансамбля молекул появляются св-ва одноосного кристалла. Характерное время ориентационных процессов колеблется от 10-11—10-12 с для газов и чистых жидкостей до 10-2 с и больше для коллоидных растворов, молекул, аэрозолей и т. п. Особенно сильно выражен ориентационный эффект в жидких кристаллах (время релаксации ~10-8с). В тв. телах при наложении электрич. поля наблюдается появление оптической анизотропии, обусловленной установлением различий в средних расстояниях между ч-цами решётки вдоль и поперёк поля (стрикционный эффект). Как ориентационный, так и стрикционный эффекты не только дают существ. вклад в эффект Керра, но и приводят к изменению интенсивности и деполяризации рассеянного света под влиянием электрич. поля (т. н. дитиндализм).
Появление лазеров привело к наблюдению в электрич. полях оптич. частоты многих электрооптич. эффектов, известных ранее для пост. поля (напр., оптич. Щтарка и Керра эффекты, оптич. стрикционный эффект и др.), а также к наблюдению новых явлений Э., связанных с изменением поляризуемости атомов и молекул при их возбуждении. К их числу относится явление образования фазовых дифракц. решёток в интерференц. поле интенсивных когерентных световых потоков. Характерной особенностью электрооптич. явлений в полях оптич. частоты является их резонансный характер.
Электрооптич. явления широко применяются для создания устройств управления оптич. излучением (модуляторы, дефлекторы, оптич. фазовые решётки и др.) и оптич. индикаторов {жидкокрист. дисплеи, цифровые индикаторы и др.), для регистрации напряжённости поля, напр. в плазме по эффекту Штарка, а также для исследования строения в-ва, внутримол. процессов, явлений в растворах
и кристаллах и т. п. Большую роль электрооптич. явления играют в нелинейной оптике (см. Самофокусировка света).
• Блинов Л. М., Электро- и магнитооптика жидких кристаллов, М., 1978; К е л и х С., Молекулярная нелинейная оптика, пер. с польск., М., 1981.
В. А. Замков.
ЭЛЕКТРОПРОВОДНОСТЬ (электрическая проводимость, проводимость),
способность тела пропускать электрич. ток под воздействием электрич. поля, а также физ. величина, количественно характеризующая эту способность. Проводники всегда содержат свободные (или квазисвободные) носители заряда — эл-ны, ионы, направленное (упорядоченное) движение к-рых и есть электрич. ток. Э. большинства проводников (металлов, ПП, плазмы) обусловлена наличием в них свободных эл-нов (в плазме небольшой вклад в Э. вносят также ионы). Ионная Э. свойственна электролитам.
Сила электрич. тока I зависит от приложенной к проводнику разности потенциалов U, к-рая определяет напряжённость электрич. поля E внутри проводника. Для изотропного проводника пост. сечения Е= -U/L, где L — длина проводника. Плотность тока j зависит от значения Е в данной точке и в изотропных проводниках совпадает с E по направлению. Эта зависимость выражается Ома законом: j=E; постоянный (не зависящий от E) коэфф. и наз. Э. или удельной Э. Величина, обратная о, наз. удельным электрич. сопротивлением: =1/. Для проводников разной природы значения (и ) существенно различны. В общем случае зависимость j от E нелинейна и зависит от IS; в этом случае вводят дифф. Э. =dj/dE. Э. измеряют в единицах (Ом•см)-1 или (в СИ) в (Ом•м)-1.
В анизотропных средах, напр. в монокристаллах, а — тензор второго ранга, и Э. для разных направлений в кристалле может быть различной, что приводит к неколлинеарности Е и j.
В зависимости от а все в-ва делятся на проводники: >106 (Ом•м)-1, диэлектрики: <10-8 (Ом•м)-1 и ПП с промежуточными значениями а. Это деление в значит. мере условно, т. к. Э. меняется в широких пределах при изменении состояния в-ва. Э. зависит от темп-ры, структуры в-ва (агрегатного состояния, дефектов и пр.) и от внеш. воздействий (магн. поля, облучения, напряжённости электрич, поля и т. п.).
Мерой «свободы» носителей заряда в проводнике служит отношение ср. времени свободного пробега (т) к характерному времени столкновения (tст): /tст>>1; чем больше это отношение, тем с большей точностью можно считать ч-цы свободными. Методы молекулярно-кинетич. теории газов позволяют выразить через концентрацию (n) свободных носителей заряда, их заряд (е) и массу (m) и время свободного пробега:
=ne2/m=ne,
где — подвижность ч-цы (см. Подвижность носителей тока), равная vcр/E=e/m, vcp — ср. скорость направл. движения (т. н. дрейфовая скорость). Если ток обусловлен i заряж. ч-цами разного сорта, то =inieii. Подвижность эл-нов (вследствие их малой массы) настолько больше ионной, что ионная Э. существенна только в случае, когда свободные эл-ны практически отсутствуют. Перенос массы под воздействием тока, напротив, связан с движением ионов.
Хар-р зависимости Э. от темп-ры Т различен у разных в-в. У металлов зависимость (Т) определяется в осн. уменьшением времени свободного пробега эл-нов с ростом темп-ры Т: увеличение темп-ры приводит к возрастанию тепловых колебаний крист. решётки, на к-рых рассеиваются эл-ны, и уменьшается (на квант. языке говорят о столкновении эл-нов с фононами). При достаточно высоких темп-рах, превышающих Дебая температуру 6д, Э. металлов обратно пропорц. темп-ре: ~1/T; при T<<Д ~7'-5, однако ограничена остаточным сопротивлением (см. Металлы). Нек-рые металлы, сплавы и ПП при понижении Т до неск. К переходят в сверхпроводящее состояние с бесконечно большой проводимостью (см. Сверхпроводимость). Э. расплавленных металлов того же порядка, что и Э. этих металлов в тв. состоянии.
В ПП резко возрастает при повышении темп-ры за счёт увеличения числа эл-нов проводимости и положит. носителей заряда — дырок (см. Полупроводники). Диэлектрики имеют заметную Э. лишь при очень высоких электрич. напряжениях: при нек-ром (большом) значении Е происходит пробой диэлектриков.
Прохождение тока через частично или полностью ионизов. газы (плазму) обладает своей спецификой (см. Электрические разряды в газах, Плазма); напр., в полностью ионизованной плазме Э. не зависит от плотности и возрастает с ростом темп-ры пропорц. Т3/2, достигая Э. хороших металлов. Об Э. жидкостей см. Электролиты, Электролиз.
Отклонение от закона Ома в пост. поле Е наступает, если с ростом Е энергия, приобретаемая ч-цей в этом поле в промежутке между столкновениями, равная еЕl (где l — ср. длина свободного пробега), становится порядка или больше kT. В металлах условию eEl>>kT удовлетворить трудно, а в ПП, электролитах и особенно в плазме явления в сильных электрич. полях весьма существенны.
893
В перем. эл.-магн. поле а зависит от частоты и от длины волны электрич. поля (временная и пространств. дисперсии, проявляющиеся при -1, l). Характерное св-во хороших проводников в том, что даже при <<-1 ток сконцентрирован вблизи поверхности проводника (скин-эффект) .
Измерение Э.— один из важных методов исследования материалов, в частности для металлов и ПП — их чистоты. Кроме того, измерение Э. позволяет выяснить динамику носителей заряда в макроскопич. теле, хар-р их вз-ствия (столкновений) друг с другом и с др. объектами в теле.
Э. металлов и ПП существенно зависит от величины магн. поля, особенно при низких темп-рах (см. Гальваномагнитные явления).
М. И. Каганов.
ЭЛЕКТРОРОЖДЕНИЕ ЧАСТИЦ, процесс рождения ч-ц на нуклонах и ат. ядрах под действием заряж. лептонов (эл-нов, позитронов и мюонов), в к-ром ч-цы образуются (в отличие от фоторождения частиц) виртуальными фотонами, испускаемыми лептонами.
ЭЛЕКТРОСЛАБОЕ ВЗАИМОДЕЙСТВИЕ, объединённая калибровочная теория эл.-магн. и слабого вз-ствий. См. Слабое взаимодействие.
ЭЛЕКТРОСТАТИКА, раздел электродинамики, в к-ром изучается вз-ствие неподвижных электрич. зарядов (электростатич. вз-ствие). Такое вз-ствие осуществляется посредством электростатического поля. Осн. закон Э.— Кулона закон.
Источниками электростатич. поля явл. электрич. заряды. Этот факт выражает Гаусса теорема. Электростатич. поле потенциально, т. е. работа сил, действующих на заряд со стороны электростатич. поля, не зависит от формы пути.
Электростатич. поле удовлетворяет ур-ниям:
divD=4, rotE=0,
где I) — вектор электрич. индукции, Е — напряжённость электрич. поля, — плотность свободных электрич. зарядов. Первое ур-ние представляет собой дифф. форму теоремы Гаусса, а второе выражает потенц. хар-р электростатич. сил поля. Эти ур-ния можно получить как частный случай Максвелла уравнений.
Типичные задачи Э.— нахождение распределения зарядов на поверхностях проводников по известным полным зарядам или потенциалам электростатическим каждого из них, а также вычисление энергии системы проводников по их зарядам и потенциалам.
• Т а м м И. Е., Основы теории электричества, 9 изд., М., 1976; Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики).
Г. Я. Мякишев.
ЭЛЕКТРОСТАТИЧЕСКАЯ ИНДУКЦИЯ, наведение электрич. заряда в проводниках или диэлектриках, помещённых в пост. электрич. поле.
В проводниках квазисвободные эл-ны перемещаются под действием внеш. электрич. поля до тех пор, пока заряд не перераспределится так, что создаваемое им электрич. поле внутри проводника полностью скомпенсирует внеш. поле и суммарное поле внутри проводника станет равным нулю. В результате на отд. участках поверхности проводника (в целом нейтрального) образуются равные по величине наведённые (индуцированные) заряды противоположного знака.
Диэлектрики в пост. электрич. поле поляризуются: происходит либо нек-рое смещение положит. и отрицат. зарядов внутри атомов (молекул), что приводит к образованию электрич. диполей (см. Поляризуемость), либо частичная ориентация молекул, обладающих электрич. моментом, в направлении поля. В обоих случаях электрич. дипольный момент диэлектрика становится отличным от нуля, а на поверхности диэлектрика появляются связ. заряды. Если поляризация неоднородная, то связ. заряды появляются и внутри диэлектрика. Поляризованный диэлектрик порождает электростатич. поле, направленное против внеш. поля и ослабляющее его (см. Диэлектрики).
Г. Я. Мякишев.
ЭЛЕКТРОСТАТИЧЕСКИЕ ЛИНЗЫ, см. Электронные линзы.
ЭЛЕКТРОСТАТИЧЕСКИЙ ГЕНЕРАТОР, устройство, в к-ром высокое пост. напряжение создаётся при помощи механич. переноса электрич. зарядов. Различают Э. г. с диэлектрич. транспортёром зарядов и с транспортёром, состоящим из металлич. цилиндров или стержней, разделённых изоляторами (транспортёр с проводящими зарядоносителями). Диэлектрич. транспортёры могут быть выполнены в виде жёсткого цилиндра или диска (роторные Э. г.) либо в виде гибкой ленты (генераторы Ван-де-Граафа). УЭ. г. с диэлектрич. транспортёром (рис. 1) заряд непрерывно стекает на него со щётки или пластинки и переносится внутрь полого высоковольтного электрода Э, где заряд стекает на этот электрод. Переносимый транспортёром ток равен: I= bv, где — поверхностная плотность заряда, b — ширина транспортёра, v — его линейная скорость. Если у высоковольтного электрода на транспортёр наносятся заряды обратной полярности, переносимый ток увеличивается вдвое. Плотность зарядов а ограничена возникновением поверхностных электрич. разрядов и обычно составляет (3—4) •10-9 Кл/см2 при токе I<1 мА.
У транспортёра с проводящими зарядоносителями заряды наносятся на их поверхность методом электростатич. индукции и передаются высоковольтному электроду дискр. порциями.

Рис. 1. Схема электростатич. генератора с диэлектрич. транспортёром зарядов: Т — транспортёр ширины b; Щ — устройства (щётки и острия) для нанесения и съёма зарядов; Э — высоковольтный электрод.
Переносимый транспортёром ток равен: I=qN, где q — заряд зарядоносителей, N — число зарядоносителей, касающихся высоковольтного электрода за 1 с. Транспортёр из цилиндров (п е л л е т р о н) передаёт ток ~ 0,1 мА, транспортёр из стержней (л а д д е т р о н) — до 0,5 мА при скорости перемещения носителей ~10 м/с. Возможно параллельное включение неск. транспортёров.
Напряжение на выходе Э. г. пропорц. сопротивлению нагрузки и току транспортёра I. Регулировать и стабилизировать его можно, изменяя ток в цепи нагрузки или плотность наносимых на транспортёр зарядов. В первом случае постоянная времени регулятора составляет неск. мс, во втором — десятые доли с. Э. г. имеют малую запасённую энергию W= CU 2 (С — ёмкость высоковольтного

894
электрода, U — напряжение генератора), а также невысокий кпд (15—20% из-за больших аэродинамич. потерь). У Э. г. с гибким транспортёром ток нагрузки обычно не превышает долей мА, а у роторных Э. г. —10 мА.
Первые Э. г. (Р. Дж. Ван-де-Грааф, 1931) имели открытую конструкцию, и у большинства из них напряжение не превышало 1 MB. В дальнейшем секционированные высоковольтные конструкции (рис. 2) и изоляция из сжатых газов позволили повысить напряжение до неск. MB. Созданы Э. г. типа пеллетрон и ладдетрон на напряжение 15—20 MB с изоляцией из элегаза (SF6).
Э. г. используются гл. обр. в высоковольтных ускорителях заряж. ч-ц, а также в слаботочной высоковольтной технике.
• К о м а р Е. Г., Основы ускорительной техники, М., 1975; Электростатические ускорители заряженных частиц, М., 1963.
М. П. Свиньин.
ЭЛЕКТРОСТАТИЧЕСКИЙ ИЗМЕРИТЕЛЬНЫЙ МЕХАНИЗМ, измерит. преобразователь электрич. напряжения в механич. перемещение на основе вз-ствия двух (или более) заряж. проводников, один из к-рых явл. подвижным.
Различают два осн. типа Э. и. м.— с изменяющейся активной площадью проводников и с изменяющимся расстоянием между проводниками. Первый тип Э. и. м. применяется в осн. в вольтметрах низких напряжений (до сотен В) и представляет собой ряд неподвижных камер (рис.) — их число определяет чувствительность механизма — и подвижных пластин.

Устройство электростатич. измерит. механизма с изменяющейся активной площадью проводников: 1 — неподвижные камеры; 2 — подвижные пластины; 4 — указатель (стрелка), расположенный на одной оси 3 с подвижными пластинами. Устройство, создающее противодействующий механич. момент, не показано.
При создании разности потенциалов между камерами и пластинами они заряжаются противоположными зарядами, и пластины втягиваются в камеры. Противодействующий момент создаётся пружинами. В Э. и. м. второй группы, применяемых в вольтметрах для измерения напряжений до неск. десятков кВ, подвижная пластина располагается между неподвижными пластинами, с одной из к-рых соединена проводником. Электростатич. силы вз-ствия перемещают подвижную пластину. Противодействующее усилие создаётся за счёт веса подвижной пластины, поэтому механизм чувствителен к наклонам.
Э. и. м. нечувствителен к частоте измеряемого напряжения и большинству внеш. влияний, за исключением электростатич. полей, от к-рых его тщательно экранируют. Осн. область применения — вольтметры для измерения напряжений в маломощных и высоковольтных цепях пост. и перем. тока. Верхний предел измерений — до 100 кВ, диапазон частот — до 20 МГц. Для расширения диапазона измерений пользуются ёмкостными делителями и измерит. усилителями.
• Основы электроизмерительной техники, М., 1972; Справочник по электроизмерительным приборам, 2 изд., Л., 1977.
В. П. Кузнецов.
ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ, электрич. поле неподвижных электрич. зарядов, осуществляющее вз-ствие между ними. Как и перем. электрич. поле, Э. п. характеризуется напряжённостью электрич. поля К — отношением силы, действующей со стороны поля на заряд, к величине заряда. Силовые линии напряжённости Э. п. не замкнуты: они начинаются на положит. зарядах и оканчиваются на отрицательных (или уходят на бесконечность). В диэлектриках Э. п. характеризуется вектором электрич. индукции D, к-рый удовлетворяет Гаусса теореме. Э. п. потенциально, т. е. работа его по перемещению электрич. заряда между двумя точками не зависит от формы траектории; на замкнутом пути она равна нулю. Вследствие потенциальности Э. п. его можно характеризовать одной скалярной ф-цией — электростатич. потенциалом , связанным с вектором Е соотношением: Е=-grad. Потенциал удовлетворяет Пуассона уравнению. В однородном диэлектрике Э. п. вследствие поляризации диэлектрика убывает в 8 раз, где — диэлектрическая проницаемость. Внутри проводников Э. п. равно нулю. Все точки поверхности проводника имеют один и тот же потенциал . Если в проводнике есть полость, то Э. п. в ней также равно нулю; на этом основана электростатич. защита электрич. приборов.
ЭЛЕКТРОСТРИКЦИЯ, деформация диэлектриков, пропорц. квадрату напряжённости электрич. поля Е2. Э. обусловлена поляризацией диэлектриков в электрич. поле и есть у всех диэлектриков — тв., жидких и газообразных. Э. следует отличать от линейного по полю Е обратного пьезоэффекта (см. Пьезоэлектрики).
В изотропных средах, в т. ч. в газах и в жидкостях, Э. наблюдается как изменение плотности под действием электрич. поля и описывается ф-лой:
V/V =AE2, (1)
где V/V—относительная объёмная деформация, А=(/2)d(д/дd) ( — сжимаемость, d — плотность, — диэлектрич. проницаемость). Для органич. жидкостей (ксилол, толуол, нитробензол) A~10-12 ед. СГСЭ. В анизотропных кристаллах Э. можно описать зависимостью между двумя тензорами 2-го ранга — тензором квадрата напряжённости электрич. поля и тензором деформации:
rij=mnRijmnEmEn. (2)
Здесь rij— компонента тензора деформации, E mEn — составляющие электрич. поля. Коэфф. Rij наз. коэфф. Э. Число независимых коэфф. Э. зависит от симметрии кристаллов. Напр., для триклинных кристаллов тензоры Э. имеют 36 независимых коэфф. Величина Rij~10-14—10-10 ед. СГСЭ. В поле E~300 В•см rij~10-6.
Иногда говорят о большой Э. у сегнетоэлектрикое. В действительности это обратный пьезоэффект, однако в сегнетоэлектрике, в к-ром объёмы различно поляризованных доменов одинаковы, деформация не зависит от направления поля. Под действием перем. электрич. поля частоты диэлектрик в результате Э. колеблется с частотой 2 со (характерно для всех квадратичных эффектов). Э. может быть использована для преобразования электрич. колебаний в звуковые.
• Желудев И. С., Фотченков А. А., Электрострикция линейных диэлектриков, «Кристаллография», 1958, т. 3, в. 3, с. 308; Иона Ф., Ширане Д., Сегнетоэлектрические кристаллы, пер. с англ., М., 1965; Желудев И. С., Основы сегнетоэлектричества. М., 1973.
И. С. Желудев.
ЭЛЕКТРОХЕМИЛЮМИНЕСЦЕНЦИЯ, люминесценция специальных жидких люминофоров в электрич. поле, к-рая происходит в неск. этапов: под действием электрич. поля молекулы электролита в р-ре диссоциируют, затем, при их рекомбинации, выделяется хим. энергия, к-рая идёт на возбуждение молекул активатора, присутствующего в растворе; возбуждённые молекулы активатора, возвращаясь в осн. состояние, испускают квант света. Э. может быть использована для создания индикаторных устройств: при возбуждении люминофора перем. электрич. полем свечение сосредоточено вблизи электрода; применяя электроды спец. формы, можно создавать, т. о., светящиеся цифры, буквы
и т. д.
М. В. Фок.
ЭЛЕКТРОХИМИЧЕСКИЙ ПОТЕНЦИАЛ, аналог химического потенциала для систем, содержащих заряж. ч-цы (ионы, эл-ны, дырки); характеризует состояние к.-л. заряж. компонента г в фазе а при определ. внеш. условиях (темп-ре, давлении, хим. составе фазы и электрич. поле). По определению, Э. п. -i=(дG/дni)Т, p,nji,
где G — значение Гиббса энергии, учитывающее наличие электрич. поля в
895
фазе , ni —число молей компонента i в этой фазе. Э. п. можно определить также как умноженную на Аеогадро постоянную работу переноса заряж. ч-цы i из бесконечно удалённой точки с нулевым потенциалом внутрь фазы а. Во мн. случаях Э. п. формально разбивают на два слагаемых, характеризующих хим. и электрич. составляющие такой работы: ~i ~i+ziF, где i — хим. потенциал ч-цы в фазе , zi заряд ч-цы с учётом знака, F — Фарадея постоянная, — электрический потенциал.
ЭЛЕМЕНТАРНАЯ ДЛИНА, то же, что фундаментальная длина.
ЭЛЕМЕНТАРНАЯ ЯЧЕЙКА кристалла, часть ат. структуры кристалла, параллельными переносами к-рой (трансляциями) в трёх измерениях можно построить всю крист. решётку. Э. я. имеет форму параллелепипеда, выбор её определяется симметрией кристаллов. См. Кристаллическая решётка.
ЭЛЕМЕНТАРНЫЕ ВОЗБУЖДЕНИЯ, см. в ст. Квазичастицы.
ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.
Введение. Э. ч. в точном значении этого термина — первичные, далее неразложимые ч-цы, из к-рых, по предположению, состоит вся материя. В совр. физике термин «Э. ч.» обычно употребляется не в своём точном значении, а менее строго — для наименования большой группы мельчайших ч-ц материи, подчинённых условию, что они не явл. атомами или ат. ядрами (исключение составляет протон). В эту группу помимо протона входят: нейтрон, электрон, фотон, а также пи-мезоны, мюоны, тяжёлые лептоны (), нейтрино трёх типов (электронное, мюонное и -нейтрино), странные частицы (К-мезоны, гипероны), разнообразные резонансы, мезоны со скрытым «очарованием» (J/,' и др.), «очарованные» частицы, ипсилон-частицы (), «красивые» ч-цы, промежуточные векторные бозоны (W ,Z°) — всего более 350 ч-ц, в осн. нестабильных. Их число продолжает расти (и, скорее всего, неограниченно велико). Большинство перечисл. ч-ц не удовлетворяет строгому определению элементарности, поскольку, по совр. представлениям, они (в частности, протон и нейтрон) явл. составными системами (см. ниже). Общее св-во всех этих ч-ц заключается в том, что они явл. специфич. формами существования материи, не ассоциированной в ядра и атомы (иногда по этой причине их наз. «субъядерными ч-цами»).
В соответствии со сложившейся практикой термин «Э. ч.» употребляется ниже в кач-ве общего назв. субъядерных ч-ц. При обсуждении ч-ц, претендующих на роль первичных элементов материи, будет использоваться термин «истинно Э. ч.».
Краткие исторические сведения.
Открытие Э. ч. явилось закономерным результатом общих успехов в изучении строения в-ва, достигнутых физикой к кон. 19 в. Первой открытой Э. ч. был эл-н — носитель отрицат. электрич. заряда в атомах (англ. физик Дж. Дж. Томсон, 1897). В 1919 англ. физик Э. Резерфорд обнаружил среди ч-ц, выбитых из ат. ядер, протоны — ч-цы с единичным положит. зарядом и массой, в 1840 раз превышающей массу эл-на. Другая ч-ца, входящая в состав ядра,— нейтрон — была открыта в 1932 англ. физиком Дж. Чедвиком. Представление о фотоне как ч-це берёт своё начало с работы нем. физика М. Планка (1900), выдвинувшего предположение о квантованности энергии эл.-магн. излучения абсолютно чёрного тела. В развитие идеи Планка А. Эйнштейн (1905) постулировал, что эл.-магн. излучение явл. потоком отд. квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта. Прямые эксперим. доказательства существования фотона были даны амер. физиками Р. Милликеном (1912—15) и A. Комптоном (1922; см. Комптона эффект). Существование нейтрино как особой Э. ч. впервые предположено B. Паули (1930); экспериментально электронное нейтрино открыто лишь в 1953 (амер. физики Ф. Райнес, К. Коуэн). Позитрон — ч-ца с массой эл-на, но с положит. электрич. зарядом, была обнаружена в составе косм. лучей амер. физиком К. Андерсоном в 1932. Позитрон был первой открытой античастицей (см. ниже). В 1936 Андерсон и С. Неддермейер (США) обнаружили при исследовании косм. лучей мюоны (обоих знаков электрич. заряда) — ч-цы с массой ок. 200 масс эл-на, а в остальном удивительно близкие по св-вам к е- и е+ . В 1947 также в косм. лучах группой англ. физика С. Пауэлла были открыты +- и --мезоны. Существование подобных ч-ц было предположено япон. физиком X. Юкавой в 1935. В кон. 40-х— нач. 50-х гг. была открыта большая группа ч-ц с необычными св-вами, получивших назв. «странных». Первые ч-цы этой группы— К+- и К --мезоны, -гипероны — были обнаружены в косм. лучах. Последующие открытия странных ч-ц были сделаны с помощью ускорителей заряж. ч-ц. С нач. 50-х гг. ускорители превратились в осн. инструмент для исследования Э. ч. Были открыты антипротон (1955), антинейтрон (1956), антисигма-гипероны (1960), а в 1964 — самый тяжёлый гиперон -. В 1960-х гг. на ускорителях было обнаружено большое число крайне неустойчивых (по сравнению с др. нестабильными, точнее, квазистабильными, Э. ч.) ч-ц, получивших назв. резонансов, составляющих осн. часть Э. ч. В 1962 выяснилось, что существуют два разных нейтрино: электронное и мюонное. В 1974 были обнаружены массивные (в 3—4 протонные массы) и в то же время относительно устойчивые (по сравнению с обычными резонансами) J/ и '-частицы. Они оказались тесно связанными с новым семейством Э. ч.— «очарованных», первые представители к-рого (D°, D+ , F+ , +c) были открыты в 1976. В 1975 был открыт тяжёлый аналог эл-на и мюона — -лептон, в 1977 — -частицы с массой порядка десяти протонных масс, в 1981— «красивые» ч-цы, а в 1983— промежуточные векторные бозоны.
Т. о., за годы, прошедшие после открытия эл-на, было выявлено огромное число разнообразных микрочастиц. Мир Э. ч. оказался очень сложно устроенным, а их св-ва во мн. отношениях неожиданными.
Основные свойства. Классы взаимодействий. Все Э. ч. явл. объектами исключительно малых масс и размеров. У большинства из них массы имеют порядок величины массы протона, равной 1,6•10-24 г (для ч-ц с ненулевой массой заметно меньше лишь масса эл-на: 0,9•10-27 г). Размеры протона, нейтрона, -мезона и др. адронов порядка 10-13 см, а эл-на и мюона не определены, но они меньше 10-16 см. Микроскопич. массы и размеры Э. ч. обусловливают квант. специфику их поведения. Характерные де-бройлевские длины волн Э. ч., как правило, сравнимы или больше их типичных размеров. В соответствии с этим квант. закономерности явл. определяющими в поведении Э. ч.
Наиболее важное квант. св-во всех Э. ч.— способность рождаться и уничтожаться (испускаться и поглощаться) при вз-ствии с др. ч-цами. В этом отношении они полностью аналогичны фотонам. Все процессы с Э. ч. (включая распады) протекают через последовательность актов их поглощения и испускания.
Разл. процессы с Э. ч. при изуч. энергиях заметно отличаются по интенсивности протекания. В соответствии с этим вз-ствия Э. ч. феноменологически делят на неск. классов: сильное, эл.-магн. и слабое. Кроме того, все Э. ч. обладают гравитац. вз-ствием.
Сильное взаимодействие вызывает процессы, протекающие с наибольшей, по сравнению с др. процессами, интенсивностью, и приводит к самой сильной связи Э. ч. Именно оно обусловливает связь протонов и нейтронов в ядрах атомов.
В основе электромагнитного взаимодействия лежит связь ч-ц с эл.-магн. полем. Обусловленные им процессы менее интенсивны, чем процессы сильного вз-ствия, а порождаемая им связь Э. ч. заметно слабее. Эл.-магнитное взаимодействие, в частности, ответственно за связь ат. электронов с ядрами и связь атомов в молекулах.
896
Слабое взаимодействие вызывает очень медленно протекающие процессы с Э. ч., в том числе распады квазистабильных Э. ч., времена жизни большинства к-рых лежат в диапазоне 10-6—10-14с.
Гравитац. вз-ствие на характерных для Э. ч. расстояниях ~10-13 см даст чрезвычайно малые эффекты из-за малости масс Э. ч., но может быть существенным на расстояниях ~10-33 см (см. ниже).
«Силу» разл. классов вз-ствий Э. ч. можно приближённо охарактеризовать безразмерными параметрами, связанными с квадратами констант связи для соответствующих вз-ствий. Для сильного, эл.-магн., слабого и гравитац. вз-ствий протонов при энергии процесса в системе центра инерции (с. ц. и.) ~1 ГэВ эти параметры соотносятся как 1:10-2:10-10:10-38. Необходимость указания энергии процесса связана с тем, что для слабого вз-ствия безразмерный параметр зависит от энергии. Кроме того, сами интенсивности разл. процессов по-разному зависят от энергии. Это приводит к тому, что относит. роль разл. вз-ствий, вообще говоря, меняется с ростом энергии ч-ц, так что разделение вз-ствий на классы, основанное на сравнении интенсивностей процессов, надёжно осуществляется при не слишком высоких энергиях. Разные классы вз-ствий имеют, однако, и др. специфику, связанную с разл. св-вами их симметрии, к-рая способствует их разделению и при более высоких энергиях. В пределе самых больших энергий деление вз-ствий Э. ч. на классы, по-видимому, утрачивает физ. смысл (см. «Великое объединение»).
В зависимости от участия в тех или иных видах вз-ствий все изуч. Э. ч., за исключением фотона, разбиваются на две осн. группы: адроны и лептоны. Адроны характеризуются наличием у них сильного вз-ствия наряду с эл.-магн. и слабым, лептоны участвуют только в эл.-магн. и слабом вз-ствиях. (Наличие гравитац. вз-ствия у всех Э. ч., включая фотон, подразумевается.)
Характеристики Э. ч. Каждая Э. ч. наряду со спецификой присущих ей вз-ствий описывается набором дискр. значений определ. физ. величин -своими хар-ками (дискр. значения, измеренные в соответствующих ед., обычно образуют совокупность целых или дробных чисел, к-рые наз. квант. числами Э. ч.). Общими хар-ками всех Э. ч. явл. масса т, время жизни т, спин J и электрич. заряд Q.
В зависимости от времени жизни Э. ч. делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными в пределах точности совр. измерений явл. эл-н (>5•1021 лет), протон (>1031 лет), фотон и нейтрино. К квазистабильным относят ч-цы, распадающиеся за счёт эл.-магн. и слабого вз-ствий; их времена
жизни >10-20 с. Резонансами наз. Э. ч., распадающиеся за счёт сильного вз-ствия; их характерные времена жизни 10-22 —10-24 с. Спин Э. ч. явл. целым или полуцелым кратным постоянной Планка п. В этих ед. спин я- и К-мезонов равен 0, у протона, нейтрона и эл-на J=1/2, у фотона J=1 и т. д. Существуют ч-цы и с большим спином. Электрич. заряды Э. ч. явл. целыми кратными величины е1,6•10-19 Кл, наз. элементарным электрическим зарядом. У известных Э. ч. Q=0, ±1, ±2.
Помимо указанных величин, Э. ч. дополнительно характеризуются ещё рядом квант. чисел, к-рые наз. «внутренними». Лептоны несут специфич. лептонный заряд (L): электронный Le, равный +1 для е- и ve, мюонный L, равный +1 для - и v , и L , связанный с -лептоном (L =+1 для -и -1 для +). Для адронов L=0. Адронам с полуцелым спином приписывают барионный заряд В(│В│=1). Адроны с B=+1 образуют подгруппу барионое, с В=0 — подгруппу мезонов. Для лептонов В=0. Для фотона B=0 и L=0.
Адроны подразделяются на обычные (нестранные) ч-цы (протон, нейтрон, -мезоны), странные ч-цы, «очарованные» и «красивые» ч-цы. Этому делению отвечает наличие у адронов особых квант. чисел: странности S, «очарования» С и «красоты» b. Внутри разных групп адронов имеются семейства ч-ц, близких по массе, с очень сходными св-вами по отношению к сильному вз-ствию, но с разл. значениями электрич. заряда. Э. ч., входящие в каждое такое семейство (простейший пример к-рого — протон и нейтрон), имеют общее квант. число — изотопический спин I (см. Изотопическая инвариантность), принимающий, как и обычный спин, целые и полуцелые значения. Семейства наз. изотопич. мультиплетами. Число ч-ц в мультиплете равно 2I+1; они отличаются друг от друга значением «проекции» изотопич. спина I3, и соответствующие значения их электрич. зарядов даются обобщённой ф-лой Гелл-Мана — Нишиджимы:
Q = I3 +Y/2,
где Y=B+S+C-b — т. н. гиперзаряд адрона, равный удвоенному ср. заряду ч-цы в изотопич. мультиплете. Важная хар-ка адронов — внутр. чётность Р, принимающая значения ±1. Для всех Э. ч. с ненулевыми значениями хотя бы одного из квант. чисел Q, L, В, S, С, b существуют античастицы с теми же значениями массы, времени жизни, спина и для адронов — изотопич. спина, но с противоположными знаками указанных квант. чисел, а для барионов — с противоположным знаком внутр. чётности. Ч-цы, тождественные своим античастицам, наз. истинно нейтральными. Истинно нейтр. адроны обладают спец. квант. числом — зарядовой чётностью С со значениями ±1; примеры таких ч-ц — фотон, °, -частицы.
Квант. числа Э. ч. разделяются на точные, т. е. сохраняющиеся во всех процессах, и неточные, к-рые в ряде процессов не сохраняются. Спин J — точное квант. число. На уровне совр. знаний точными явл. и квант. числа Q, В, L, хотя теоретически допустимы нарушения сохранения В и L. Большинство квант. чисел адронов неточные. Изотопич. спин, сохраняясь в сильном вз-ствии, не сохраняется в эл.-магн. и слабом. Странность, «очарование», «красота» сохраняются в сильном и эл.-магн. вз-ствиях, но не сохраняются в слабом. Слабое вз-ствие изменяет также внутр. и зарядовую чётности. Причины несохранения квант. чисел адронов неясны и, по-видимому, связаны со структурой эл.-магн. и слабого вз-ствий. Сохранение или несохранение тех или иных квант. чисел — одно из существ. проявлений различий классов вз-ствий Э. ч.
В табл. 1 приведены наиб. хорошо изученные Э. ч. и их квант. числа. Из неё следует, что осн. часть 0. ч.— адроны.
Классификация адронов. Унитарная симметрия. Большое число адронов уже в нач. 50-х гг. явилось основанием для поисков закономерностей в распределении масс и квант. чисел барионов и мезонов, к-рые могли бы составить основу их классификации. Выделение изотопич. мультиплетов адронов было первым шагом на этом пути. С матем. точки зрения объединение адронов в изотопич. мультиплеты отражает наличие у них симметрии, связанной с группой унитарных преобразований в нек-ром двумерном «внутр. пр-ве» — «изотопич. пр-ве» [с группой SU(2)]. Изотопические мультиплеты суть неприводимые представления группы SU(2).
Концепция симметрии как фактора, определяющего существование разл. групп и семейств Э. ч., явл. ведущей в совр. теории Э. ч. Наличие «внутр.» квант. чисел, характеризующих эти семейства (таких, как изотопич. спин и др.), отражает существование симметрии относительно преобразований в особых, приписываемых Э. ч. «внутренних пр-вах».
Детальное рассмотрение позволило сделать вывод о том, что странные и обычные адроны в совокупности образуют более широкие объединения ч-ц с близкими св-вами, чем изотопич. мультиплеты. Они наз. унитарными мультиплетами. Числа входящих в них ч-ц равны 8 (октет) и 40 (декуплет). Ч-цы такого мультиплета имеют одинаковые спин и внутр. чётность, но различаются значениями не только электрич. заряда (как ч-цы изотопич.
897
мультиплета), но и странности. Пример унитарных октетов:
мезонов, Jp= 0-: +, °, -, , К+,
К°, К-, К~°, барионов, Jp = 1/2+: + , °, -, ,
p, n, -, °
и унитарного декуплета барионов: Jp=3/2+ : 1++, 1+, , 1-, *+, *°, *-, *-, *°, -.
Возникновение унитарных мультиплетов истолковывается как проявление существования у адронов группы симметрии более широкой, чем SU(2), а именно группы SU(3). Соответствующая симметрия получила назв. унитарной симметрии; 8 и 10 — размерности неприводимых представлений группы SU(3). Унитарная симметрия менее точная, чем изотопическая. В соответствии с этим различие в массах ч-ц, входящих в унитарные мультиплеты, довольно значительно.
Открытие «очарованных» и «красивых» адронов позволяет говорить об унитарных сверхмультиплетах и о существовании ещё более широких симметрии, связанных с унитарными группами SU(4) и SU(5), хотя и сильно нарушенных.
Обнаружение у адронов св-в симметрии, связанных с унитарными группами, и закономерностей разбиения на мультиплеты, отвечающие строго определ. представлениям этих групп, явилось основой для вывода о существовании особых структурных единиц, из к-рых построены адроны, — кварков.
Кварковая модель адронов. Теория унитарных групп позволяет построить все представления группы SU(n) (и, следовательно, все мультиплеты адронов), повторяя определ. число раз самое простое представление группы, содержащее n компонент. Допуская наличие ч-ц (кварков), связанных с этим простейшим представлением, можно заключить, что все адроны явл. комбинациями кварков. Такое допущение было сделано в 1964 (Г. Цвейг и независимо от него М. Гелл-Ман, США). Исходя из SU(3)-симметрии, они предположили наличие трёх фундам. ч-ц со спином 1/2: u-, d-, s-кварков (совр. обозначения), из к-рых построены адроны. Наблюдаемая размерность унитарных мультиплетов (8 и 10) была воспроизведена при допущении, что мезоны составлены из кварка (q) и антикварка (q~),— символически: М=(qq~), a барионы из трёх кварков,— символически: В=(qqq). В дальнейшем с учётом новых эксперим. фактов эта модель строения адронов была расширена путём включения в неё ещё двух кварков: «очарованного» (с) и «красивого» (b). Все эксперим. данные хорошо согласуются с предлож. моделью.
1>