От лат evaporo испаряю и греч grapho пишу), метод получения изображений объектов в их собственном (обычно ик) тепловом излучении. Предложен нем
Вид материала | Документы |
- Реферат по русскому языку на тему: «Типы словарей», 284.65kb.
- Метод распознавания изображений гистологических препаратов в задачах медицинской диагностики, 31.25kb.
- Конспект лекций для 16-и часового курса начертальная геометрия издание 2-ое, 578.52kb.
- Обработка и передача изображений, 243.48kb.
- Социоло́гия (от лат socius общественный; др греч. λόγος мысль, причина) наука о закономерностях, 85.75kb.
- Isbn 5-7262-0634 нейроинформатика 2006, 165.42kb.
- М. В. Лычагин Зав кафедрой д э. н., профессор, 986.65kb.
- Предложен метод неразрушающего акустического контроля многофазных макрооднородных композитных, 14.58kb.
- От греч autos -сам, bios жизнь, grapho пишу, лит прозаический жанр; как правило, последовательное, 2051.5kb.
- М. В. Корытова научный руководитель Р. Т. Файзуллин, д т. н., профессор Омский государственный, 26.14kb.
В системе ед. СГСЭ Э. ё. измеряется в сантиметрах, в СИ — в фарадах: 1 Ф=9•1011 см.
Понятие Э. ё. относится также к системе проводников, в частности двух проводников, разделённых тонким слоем диэлектрика,— электрич. конденсатору. Э. ё. конденсатора (взаимная ёмкость его обкладок) С=q/(1-2), где q — заряд одной из обкладок (заряды обкладок по абс. величине равны), 1-2 — разность потенциалов между обкладками. Э. ё. конденсатора практически не зависит от наличия окружающих тел и может достигать очень большой величины при малых геом. размерах конденсаторов.
Г. Я. Мякишев.
ЭЛЕКТРИЧЕСКАЯ ИНДУКЦИЯ (D), векторная величина, характеризующая электрич. поле и равная сумме двух векторов разл. природы: напряжённости электрического поля Е — гл. хар-ки поля и поляризации среды Р, к-рая определяет электрич. состояние в-ва в этом поле. В Гаусса системе единиц
D=E+4P, (1)
в СИ
D=0E+P, (1')
где 0 — размерная константа, наз. электрической постоянной или диэлектрич. проницаемостью вакуума.
В изотропном в-ве, не обладающем сегнетоэлектрич. св-вами, при слабых полях вектор поляризации прямо пропорц. напряжённости поля. В системе Гаусса
Р=еЕ, (2)
где е — пост. безразмерная величина, наз. диэлектрической восприимчивостью. Для сегнетоэлектриков е зависит от Е, и связь между Р и Е становится нелинейной.
Подставив выражение (2) в (1), получим:
D =(1+4e)E=E. (3)
Величина
=1+4е (4)
наз. диэлектрической проницаемостью в-ва.
В системе СИ
Смысл введения вектора Э. и. состоит в том, что поток вектора D через любую замкнутую поверхность определяется только свободными зарядами, а не всеми зарядами внутри объёма, ограниченного данной поверхностью, подобно потоку вектора Е. Это позволяет не рассматривать связанные (поляризационные) заряды и упрощает решение мн. задач.
Г. Я. Мякишев,
862
ЭЛЕКТРИЧЕСКАЯ ПОСТОЯННАЯ (0) (по старой терминологии — диэлектрич. проницаемость вакуума), физ. постоянная, входящая в ур-ния законов электрич. поля (см., напр., Кулона закон) при записи этих ур-ний в рационализованной форме, в соответствии с к-рой образованы электрич. и магн. ед. Международной системы
единиц. 0=(0с2)-1=(107/4c2) Ф•м-1=8,85418782(7) •10-12 Ф•м-1, где 0— магнитная постоянная. В отличие от диэлектрич. проницаемости (зависящей от типа в-ва, темп-ры, давления и др. параметров), 0 зависит только от выбора системы ед. В СГС системе единиц (гауссовой) 0=1.
ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ, напряжённость электрич. однородного поля Епр, при к-рой наступает электрический пробой в-ва. У слюды, кварца и др. «хороших» диэлектриков Ёпр~106—107 В/см; в очищенных и обезгаженных жидких диэлектриках Eпр~106В/см; в газах Э. п. зависит от давления и др. условий; для воздуха при норм. условиях и толщине слоя ~1 см Eпр~3•104 В/см (см. Электрические разряды в газах). У полупроводников Епр изменяется в широких пределах от 106 В/см до долей В/см.
• См. лит. при ст. Диэлектрики.
ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ, электромагнитные колебания в квазистационарных цепях, размеры к-рых малы по сравнению с длиной эл.-магн. волны. Это позволяет не учитывать волнового характера процессов и описывать их как колебания электрич. зарядов Q (в ёмкостных элементах цепи) и токов I (в индуктивных и диссипативных элементах) в соответствии с ур-нием непрерывности: I=±dQ/dt. В случае одиночного колебательного контура Э. к. описываются ур-нием:
где L — самоиндукция, С — ёмкость, R — сопротивление, ξ — внешняя
ЭДС.
М. А. Миллер.
ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ГАЗАХ, прохождение электрич. тока через газовую среду, сопровождающееся изменением состояния газа. Многообразие условий, определяющих исходное состояние газа (состав, давление и т. д.), внеш. воздействий на газ, материалов, форм и расположения электродов, конфигурации возникающего в газе электрич. поля и т. п. приводит к тому, что существует множество видов Э. р. в г., причём их законы сложнее, чем законы прохождения электрич. тока в металлах и электролитах. Э. р. в г. подчиняются Ома закону лишь при очень малой приложенной извне разности потенциалов, поэтому их электрич. св-ва описывают с помощью вольтамперной хар-ки (рис. 1 и 3).
Газы становятся электропроводными в результате их ионизации. Если Э. р. в г. происходит только при вызывающем и поддерживающем ионизацию внеш. воздействии (при действии т. н. внеш. ионизаторов), его наз. несамостоят. разрядом. Э. р. в г., продолжающийся и после прекращения действия внеш. ионизатора, наз. самостоят. разрядом.
Несамостоят. разряд при малом значении разности потенциалов U между анодом и катодом в газе наз. тихим разрядом. При повышении U сила тока i тихого разряда сначала увеличивается пропорц. напряжению (участок кривой ОА на рис. 1), затем рост тока замедляется (участок кривой АВ) и, когда все заряж. ч-цы, возникшие под действием ионизатора в ед. времени, уходят за то же время на катод и на анод, усиление тока с ростом напряжения не происходит (участок ВС). При дальнейшем росте напряжения ток снова возрастает и тихий разряд переходит в несамостоятельный лавинный разряд (участок СЕ). В этом случае сапа тока определяется как интенсивностью воздействия ионизатора, так и газовым усилением, к-рое зависит от давления газа и напряжённости электрич. поля в области, занимаемой разрядом.
Тихий разряд наблюдается при давлении газа порядка атмосферного. Внеш. ионизаторами могут быть: радиоакт. излучение, космические лучи, свет, пучки быстрых эл-нов и т. д. Ионизаторы двух последних типов используются (преим. в импульсном режиме) в нек-рых типах газовых лазеров.
Переход несамостоят. Э. р. в г. в самостоятельный характеризуется резким усилением электрич. тока (точка Е на кривой рис. 1) и наз. пробоем электрическим газа.
Рис. 1. Вольтамперная хар-ка тихого разряда.
Соответствующее напряжение Uз наз. напряжением зажигания (см. Зажигания потенциал). В случае однородного поля оно зависит от вида газа и от произведения давления газа р на расстояние между электродами d (рис. 2 и ст. Пашена закон). Разряд после электрич. пробоя принимает форму тлеющего разряда, если давление газа низко (неск. мм рт. ст.). При более высоком давлении (напр., при атмосферном) лавинное усиление Э. р. в г. приводит к возникновению пространств. заряда, что меняет хар-р процесса пробоя. Между электродами образуется один или неск. узких проводящих (заполненных плазмой) каналов, к-рые наз. стримерами. Время образования стримеров очень мало (ок. 10-7 с). После короткого переходного процесса самостоятельный газовый разряд становится стационарным. Обычно такой разряд осуществляют в закрытом изолированном сосуде (стеклянном или керамическом). Ток в газе течёт между двумя электродами: отрицат. катодом и положит. анодом. Одним из осн. типов газового разряда, формирующимся, как правило,
Рис. 2. Кривые Пашена для разл. газов. По оси абсцисс отложены произведения p d в мм рт. ст.мм, по оси ординат—. напряжение пробоя Uз в В.
при низком давлении и малом токе (участок в на рис. 3), явл. тлеющий разряд. Гл. четыре области разрядного пр-ва, характерные для тлеющего разряда, это: катодное тёмное пр-во, тлеющее (или отрицательное) свечение, фарадеево тёмное пр-во, положительный столб. Первые три области находятся вблизи катода и образуют катодную часть разряда, в к-рой происходит резкое падение потенциала (катодное падение), связанное с большой концентрацией положит. ионов на границе катодного тёмного пр-ва и тлеющего свечения. Эл-ны, ускоренные в области катодного тёмного пр-ва, производят в области тлеющего свечения интенсивную ударную ионизацию. Тлеющее свечение обусловлено рекомбинацией ионов и эл-нов в нейтр. атомы или молекулы. Для положит. столба разряда вследствие постоянной и большой концентрации эл-нов характерны незначит. падение потенциала в нём, свечение, вызываемое возвращением возбуждённых молекул (атомов) газа в основное состояние, и большая электропроводность.
Стационарность в положит. столбе объясняется взаимной компенсацией процессов образования и потерь заряж. ч-ц. Образование таких ч-ц происходит при ионизации атомов и молекул в результате столкновений с ними эл-нов. К потерям заряж. ч-ц приводит амбиполярная диффузия к стенке сосуда, ограничивающего разрядный объём, и следующая за этим рекомбинация. Диффуз. потоки, направленные не к стенке, а вдоль разрядного тока, часто ведут к образованию в положит. столбе своеобразных «слоев», или страт (обычно движущихся).
При увеличении разрядного тока нормальный тлеющий разряд становится аномальным (рис. 3) и начинается стягивание (контракция) положит. столба. Столб отрывается от стенок сосуда, в нём начинает происходить
863
дополнит. процесс потери заряж. ч-ц (рекомбинация в объёме). Предпосылкой для этого явл. увеличение плотности заряж. ч-ц. При дальнейшем повышении разрядного тока ток на катоде стягивается в катодное пятно, катодное падение потенциала резко снижается и тлеющий разряд скачком переходит в дуговой разряд. Электропроводность столба повышается, вольтамперная хар-ка приобретает падающий хар-р (точка г, рис. 3).
Рис. 3. Вольтамперная хар-ка разряда: аб — несамостоятельного лавинного;
бвг — тлеющего (нормального и аномального); гд — дугового (ток в амперах).
Хотя дуговой разряд может «гореть» в широком диапазоне давлений газа, в большинстве практически интересных случаев он реализуется при давлении порядка атмосферного.
Во всех случаях формирования самостоят. Э. р. в г. особое значение имеют приэлектродные процессы, причём ситуация у катода сложнее, чем у анода. При тлеющем разряде непрерывная связь между катодом и положит. столбом обеспечивается за счёт высокого значения катодного падения потенциала. В самостоятельном дуговом разряде перенос тока в прикатодной области осуществляется за счёт термоэлектронной эмиссии или др. более сложных механизмов.
Все рассмотренные выше Э. р. в г. происходят под действием пост. электрич. напряжения. Однако газовые разряды могут протекать и под действием перем. электрич. напряжения. Такие разряды имеют стационарный хар-р, если частота перем. напряжения достаточно высока (или, наоборот, настолько низка, что полупериод перем напряжения во много раз больше времени установления разряда, так что каждый электрод попеременно служит катодом и анодом). Типичным примером может служить высокочастотный разряд. ВЧ разряд может «гореть» даже при отсутствии электродов (безэлектродный разряд). Перем. электрич. поле создаёт в определ. объёме плазму и сообщает эл-нам энергию, достаточную для того, чтобы производимая ими ионизация восполняла потери заряж. ч-ц вследствие диффузии и рекомбинации. Внеш. вид и хар-ки ВЧ разрядов зависят от рода газа, его давления, частоты перем. поля и подводимой мощности. Элем. процессы на поверхности тв. тела (металла или изолятора разрядной камеры)
играют определ. роль только в процессе «поджига» разряда. Столб стационарного ВЧ разряда подобен положит. столбу тлеющего разряда.
Кроме установившихся разрядов, осн. хар-ки к-рых не зависят от времени, существуют неустановившиеся Э. р. в г. Они возникают обычно в сильно неоднородных полях, напр. у заострённых и искривлённых поверхностей проводников и электродов. Величина напряжённости поля и степень его неоднородности вблизи таких тел столь велики, что происходит ударная ионизация эл-нами молекул газа. Два важных типа неустановившегося разряда — коронный разряд и искровой разряд.
При коронном разряде ионизация не приводит к пробою, потому что сильная неоднородность электрич. поля, обусловливающая её, существует только в непосредств. близости от проводов и остриёв. Коронный разряд представляет собой многократно повторяющийся процесс поджига, к-рый распространяется на ограниченное расстояние от проводника, до области, где напряжённость поля уже недостаточна для поддержания разряда. Искровой разряд, в отличие от коронного, приводит к пробою. Этот Э. р. в г. имеет вид прерывистых ярких зигзагообразных разветвляющихся, заполненных ионизованным газом нитей-каналов, к-рые пронизывают промежуток между электродами и исчезают, сменяясь новыми. Искровой разряд сопровождается выделением большого кол-ва теплоты и ярким свечением. Он проходит след. стадии: резкое увеличение числа эл-нов в сильно неоднородном поле близ проводника (электрода) в результате тюследоват. актов ионизации, начинаемых немногими, случайно возникшими свободными эл-нами; образование электронных лавин; переход лавин в стримеры под действием пространств. заряда, когда плотность заряж. ч-ц в головной части каждой лавины превысит нек-рую критическую. Совместное действие пространств. заряда, ионизирующих эл-нов и фотонов в «головке» стримера приводит к увеличению скорости развития разряда. Примером естественного искрового разряда явл. молния, длина к-рой может достигать неск. км, а макс. сила тока — неск. сотен тысяч А.
Все виды Э. р. в г. исследуются и применяются при возбуждении газовых лазеров. Дуговой или ВЧ разряды явл. осн. рабочими процессами в плазмотронах. На применении искрового разряда основаны прецизионные методы электроискровой обработки. При фокусировке лазерного светового излучения происходит пробой воздуха в фокусе и возникает безэлектродный разряд (подобный ВЧ разряду и искре), наз. лазерной искрой. Мощные сильноточные разряды в водороде служили первыми шагами на пути к управляемому термоядерному синтезу.
В системе естеств. наук изучение Э. р. в г. занимает место в физике плазмы. При Э. р. в г. образуется низкотемпературная плазма, для к-рой характерна малая степень ионизации. В отличие от высокотемпературной (полностью ионизованной) плазмы в низкотемпературной плазме атомы или молекулы нейтр. газа играют важную роль. Эл-ны, ионы и нейтр. ч-цы «мягко» взаимодействуют. Вследствие этого может возникнуть термодинамически неравновесная ситуация, при к-рой эл-ны, ионы и нейтр. газ имеют разные темп-ры. Эта ситуация ещё более усложняется, если в балансе энергии Э. р. в г. нельзя пренебречь световым излучением (напр., в сильноточных дуговых разрядах). В таких случаях низкотемпературную плазму необходимо описывать с помощью кинетич. теории плазмы.
• Э н г е л ь А., Ш т е н б е к М., Физика и техника электрического разряда в газах, пер. с нем., т. 1—2, М.— Л., 1935— 1936; Грановский В. Л., Электрический ток в газе. Установившийся ток, М., 1971; Капцов Н. А., Электроника,
2 изд., М., 1956; Мик Дж., Крэгс Дж., Электрический пробой в газах, пер. с англ., М., 1960; Браун С., Элементарные процессы в плазме газового разряда, [пер. с англ.], М., 1961; Физика и техника низкотемпературной плазмы, М., 1972; Р а й з е р Ю. П., Основы современной физики газоразрядных процессов, М., 1980.
М. Штеенбек, Л. Ротхардт (ГДР).
ЭЛЕКТРИЧЕСКИЙ ЗАРЯД, источник эл.-магн. поля, связанный с матер. носителем; внутр. хар-ка элем. ч-цы, определяющая её электромагнитное взаимодействие. Вся совокупность электрич. и магн. явлений есть проявление существования, движения и вз-ствия Э. з.
Различают два вида Э. з., условно наз. положительными и отрицательными; при этом одноимённо заряж. тела (ч-цы) отталкиваются, а разноимённо заряженные — притягиваются. Заряд наэлектризованной стеклянной палочки назвали положительным, а смоляной (в частности, янтарной) — отрицательным. В соответствии с этим условием Э. з. эл-на (эл-н по-греч. янтарь) — отрицателен. Э. з. дискретен: существует минимальный элементарный электрический заряд, к-рому кратны все Э. з. ч-ц и тел. Полный Э. з. замкнутой физ. системы, равный алгебр. сумме зарядов слагающих систему элем. ч-ц (для обычных макроскопич. тел — протонов и эл-нов), строго сохраняется во всех вз-ствиях и превращениях ч-ц этой системы (см. Заряда сохранения закон). Сила вз-ствия между покоящимися заряж. телами (ч-цами) подчиняется Кулона закону. Связь Э. з. с эл.-магн. полем определяется Максвелла уравнениями.
В СИ Э. з. измеряется в кулонах.
Л. И. Пономарёв.
ЭЛЕКТРИЧЕСКИЙ ТОК, упорядоченное (направленное) движение электрически заряж. ч-ц или заряж. макроскопич. тел. За направление тока принимают направление движения положительно заряж. ч-ц; если ток создаётся отрицательно заряж.
864
ч-цами (напр., эл-нами), то направление тока считают противоположным направлению движения ч-ц. Различают Э. т. проводимости, связанный с движением заряж. ч-ц относительно той или иной среды (т. е. внутри макроскопич. тел), и конвекционный ток — движение макроскопич. заряж. тел как целого (напр., заряж. капель дождя).
О наличии Э. т. в проводниках можно судить по действиям, к-рые он производит: нагреванию проводников, изменению их хим. состава, созданию магн. поля. Магн. действие тока проявляется у всех без исключения проводников; в сверхпроводниках не происходит выделения теплоты, а хим. действие тока наблюдается преим. в электролитах. Магн. поле порождается не только током проводимости или конвекц. током, но и перем. электрич. полем в диэлектриках и вакууме. Величину, пропорц. скорости изменения электрич. поля во времени, Дж. Максвелл назвал током смещения. Ток смещения входит в Максвелла уравнения на равных правах с током, обусловленным движением зарядов. Поэтому полный Э. т., равный сумме тока проводимости и тока смещения, определяет создаваемое им магн. поле.
Количественно Э. т. характеризуется скалярной величиной — силой тока I и векторной величиной — плотностью электрического тока у. При равномерном распределении плотности тока по сечению проводника
I=jS=q0nv~S,
где q0 — заряд ч-цы, n — число ч-ц в ед. объёма, v~ — ср. скорость направл. движения ч-ц, S — площадь поперечного сечения проводника.
Для возникновения и существования Э. т. необходимо наличие свободных заряж. ч-ц (т. е. положит. или отрицат. заряж. ч-ц, не связанных в единую электрически нейтр. систему) и силы, создающей и поддерживающей их упорядоч. движение. Обычно такой силой явл. сила со стороны электрич. поля внутри проводника, к-рое определяется электрич. напряжением на концах проводника. Если напряжение не меняется во времени, то в проводнике устанавливается постоянный ток, если меняется — переменный ток.
Важнейшей хар-кой проводника явл. зависимость силы тока от напряжения —вольтамперная хар-ка. Для металлич. проводников и электролитов она определяется Ома законом.
Способность в-в пропускать Э. т. характеризуется электропроводностью (или электрическим сопротивлением).
• Тамм И. Е., Основы теории электричества, 9 изд., М., 1976, гл. 3, 6; Калашников С. Г., Электричество, 4 изд., М., 1977, гл. 6, 14 — 16, 18 (Общий курс физики).
Г. Я. Мякишев.
ЭЛЕКТРИЧЕСКОЕ НАПРЯЖЕНИЕ между двумя точками электрической цепи или электрич. поля, равно работе электрич. поля по перемещению единичного положит. заряда из одной точки в другую. В потенц. электрич. поле (электростатическом поле) эта работа не зависит от пути, по к-рому перемещается заряд; в этом случае Э. н. (или просто напряжение) между двумя точками совпадает с разностью потенциалов между ними.
Если поле непотенциально, то Э. н. зависит от пути, по к-рому перемещается заряд между точками. Непотенц. силы, наз. сторонними, действуют внутри любого источника постоянного тока. Напряжение на зажимах источника тока измеряется работой электрич. тока по перемещению единичного положит. заряда вдоль пути, лежащего вне источника; в этом случае Э. н. равно разности потенциалов на зажимах источника и определяется законом Ома: U=ξ-IRi=IR, где I — сила тока, Ri — внутр. сопротивление источника R — сопротивление внеш. цепи, а ξ — его электродвижущая сила (эдс). При разомкнутой цепи (I=0) напряжение равно эдс источника. Поэтому эдс источника часто определяют как Э. н. на его зажимах при разомкнутой цепи.
В случае переменного тока Э. н. обычно определяется действующим (эффективным) среднеквадратичным за период — значением. Напряжение на зажимах источника перем. тока или катушки индуктивности измеряется работой электрич. поля по перемещению единичного положит. заряда вдоль пути, лежащего вне источника или катушки. Вихревое (непотенциальное) электрич. поле на этом пути практически отсутствует, и напряжение равно разности потенциалов. Э. н. обычно измеряют вольтметром. Единица Э. н. в системе СИ — вольт.
Г. Я. Мякишев.