Тарасенко В. Фрактальная логика
Вид материала | Книга |
СодержаниеХулио Кортасар |
- Программа курса и темы практических занятий; Логика в таблицах и схемах. Логика как, 1722.34kb.
- Логика в образовании, 153.37kb.
- Математическая логика, 1012.22kb.
- Логика богочеловечества, 213.06kb.
- Н. В. Папуловская Математическая логика Методическое пособие, 786.38kb.
- Основы логики. Логика, 20.66kb.
- А. А. Ивин логика учебное пособие, 3160.22kb.
- Вопросы к экзамену по дисциплине «Логика», 15.87kb.
- А. А. Ивин логика учебное пособие, 3123.01kb.
- Вматематике понятие фрактал появилось в конце семидесятых годов после выхода в свет, 308.55kb.
Случай, при котором Н=1/2, соответствует полностью независимым значениям - процесс стохастичен, его значения друг с другом не коррелируют.
Чтобы усовершенствовать эту модель, оценить корреляции будущих значений процесса с прошлыми, но вместе с тем, сохранить преемственность моделей с гауссовскими распределениями, вводится понятие модели обобщенного броуновского движения. Обобщенное броуновское движение имеет бесконечно большое время корреляции.
Дисперсия приращений V(t - t0) имеет вид:
V(t - t0) t - t02Н, (2.8.3.8)
а функция корреляции будущих приращений с прошлыми записывается в виде
С(t) = 22H-1 - 1. (2.8.3.9)
Ясно, что "гауссовости" не будет и во многих логических фракталах. Показатель Н, который также можно называть Н-размерностью показывает степень близости логического фрактала к случайному процессу типа классического броуновского движения или бросания монеты.
Оценить показатель Н можно различными методами - например, методом Херста, оценивая накопленное количество И или Л на различных масштабах. Подробнее о методе Херста и обобщенном броуновском движении можно прочитать в уже упоминаемой книге Енса Федера.
Таким образом, Н можно использовать как количественную характеристику логического фрактала.
Послесловие: проблемы и задачи фрактальной логики
«Минотавр берется мною под защиту. Тезей становится стандартным персонажем, личностью без воображения, почитающей все условности. Минотавр – поэт, он не похож на других, он совершенно свободен. Его изолировали от всех потому, что он угрожает установленному порядку.»
Хулио Кортасар23.
В данном тексте были предъявлены подходы, с помощью которых можно постепенно уточнять понятия логического фрактала и фрактальной логики, перечислены основные представления и концептуальные установки фрактальной логики.
Что дальше? Постараемся пофантазировать.
…Роджер Пенроуз в книге «The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics»24 рассматривает следующий мысленный эксперимент. Пусть мы формализовали с помощью искусственного языка некоторые высказывания, и дали задание компьютеру определить их истинность или ложность. Это определение происходит на основании системы аксиом – набора формализованных алгоритмическим языком мета-высказываний, определяющих все правила присвоения высказываниям логических значений.
Меняя систему аксиом, можно задавать возможные логики, рассматривать значения возможных высказываний. В частности, можно найти такую систему аксиом, в которой суждение «Я лгу» не образует противоречия.
Однако, согласно теореме Гёделя о неполноте, при любой полной системе аксиом всегда найдутся высказывания, которые будут противоречивы и зациклят компьютер – введут в бесконечную последовательность вычислений, из которой невозможно выйти. В теории искусственного интеллекта существует проблема остановки – не существует алгоритма, позволяющего дать ответ о том, остановится или нет программа вычислений25. Таким образом, не существует программы, которая могла бы показать – зациклен компьютер или нет.
Следовательно, любой достаточно сложный компьютер, работающий по определенной аксиоматической схеме всегда можно либо остановить, либо сломать. Вероятность остановки и ломки тем выше, чем сложнее аксиоматическая система.
Если рассматривать наше мышление с точки зрения аксиом, то оно необычайно сложно – требуется очень большое количество аксиом, необходимых для моделирования мышления. Тем не менее, мышление очень надежно – оно очень редко демонстрирует ломки или остановки. Это связано с тем, что наше мышление, по мнению Пенроуза, не устроено по принципу «аксиомы плюс высказывания» - мозг принципиальным образом отличается от компьютера, описанного выше.
Сэр Роджер Пенроуз (род. 1931)
Получил известность в начале 70 годов как соавтор (вместе со Сивеном Хокингом) теории черных дыр. Кроме того, известны парадоксальные геометрические фигуры и мозаики Пенроуза. Последние были запатентованы Пенроузом как основа многих логических головоломок и игр. Имеет личную страницу в Интернет и сам отвечает на письма.
Человеческое мышление решает алгоритмически неразрешимые задачи, которые поставили бы в тупик любую машину. Этой точкой зрения Пенроуз оппонирует Тьюрингу – машина не может мыслить, так как процессы мышления принципиально не представимы в рамках алгоритмов – например, алгоритмов машины Тьюринга.
Мышление, по мнению Пенроуза, является квантовой системой – мозг может производить вычисления на алгоритмически неразрешимых задачах, аксиоматические системы которых нелокальны – находятся в особых "квантово-механических" состояниях.
Мозг умеет переходить от "квантово-механического" состояния – алгоритмически неразрешимого и нелокального к "классическому" через некую (весьма загадочную в рассуждениях Пенроуза) редукционную функцию – функцию локализации мышления в мысли.
Эти туманные рассуждения Пенроуза можно метафорически проиллюстрировать фрактальной логикой.
Если представить логический фрактал как процесс определения аксиоматической системой истинности или ложности высказывания, то он является, по определению, нелокальной системой с точки зрения внешнего наблюдателя. Логическое значение логического фрактала нелокализовано в локальном знаке.
Поэтому логический фрактал может стать метафорой "квантомеханического состояния" в терминологии Пенроуза.
Аналогом классического или локализованного состояния аксиоматической системы будут ряды ИВ или ЛВ. Кроме того, мы будем считать классическим высказыванием и высказывания с аттрактором первого рода.
Ясно, что аналогом локального состояния могут стать законы фрактальной логики.
А вот пример "редукционной функции" или процедуры локализации, где А – логический фрактал: