Тарасенко В. Фрактальная логика

Вид материалаКнига

Содержание


Хулио Кортасар
Подобный материал:
1   2   3   4   5

Случай, при котором Н=1/2, соответствует полностью независимым значениям  - процесс стохастичен, его значения друг с другом не коррелируют.

Чтобы усовершенствовать эту модель, оценить корреляции будущих значений процесса с прошлыми, но вместе с тем, сохранить преемственность моделей с гауссовскими распределениями, вводится понятие модели обобщенного броуновского движения. Обобщенное броуновское движение имеет бесконечно большое время корреляции.

Дисперсия приращений V(t - t0) имеет вид:

V(t - t0)   t - t02Н, (2.8.3.8)

а функция корреляции будущих приращений с прошлыми записывается в виде

С(t) = 22H-1 - 1. (2.8.3.9)

Ясно, что "гауссовости" не будет и во многих логических фракталах. Показатель Н, который также можно называть Н-размерностью показывает степень близости логического фрактала к случайному процессу типа классического броуновского движения или бросания монеты.

Оценить показатель Н можно различными методами - например, методом Херста, оценивая накопленное количество И или Л на различных масштабах. Подробнее о методе Херста и обобщенном броуновском движении можно прочитать в уже упоминаемой книге Енса Федера.

Таким образом, Н можно использовать как количественную характеристику логического фрактала.

Послесловие: проблемы и задачи фрактальной логики

«Минотавр берется мною под защиту. Тезей становится стандартным персонажем, личностью без воображения, почитающей все условности. Минотавр – поэт, он не похож на других, он совершенно свободен. Его изолировали от всех потому, что он угрожает установленному порядку.»

Хулио Кортасар23.


В данном тексте были предъявлены подходы, с помощью которых можно постепенно уточнять понятия логического фрактала и фрактальной логики, перечислены основные представления и концептуальные установки фрактальной логики.

Что дальше? Постараемся пофантазировать.

…Роджер Пенроуз в книге «The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics»24 рассматривает следующий мысленный эксперимент. Пусть мы формализовали с помощью искусственного языка некоторые высказывания, и дали задание компьютеру определить их истинность или ложность. Это определение происходит на основании системы аксиом – набора формализованных алгоритмическим языком мета-высказываний, определяющих все правила присвоения высказываниям логических значений.

Меняя систему аксиом, можно задавать возможные логики, рассматривать значения возможных высказываний. В частности, можно найти такую систему аксиом, в которой суждение «Я лгу» не образует противоречия.

Однако, согласно теореме Гёделя о неполноте, при любой полной системе аксиом всегда найдутся высказывания, которые будут противоречивы и зациклят компьютер – введут в бесконечную последовательность вычислений, из которой невозможно выйти. В теории искусственного интеллекта существует проблема остановки – не существует алгоритма, позволяющего дать ответ о том, остановится или нет программа вычислений25. Таким образом, не существует программы, которая могла бы показать – зациклен компьютер или нет.

Следовательно, любой достаточно сложный компьютер, работающий по определенной аксиоматической схеме всегда можно либо остановить, либо сломать. Вероятность остановки и ломки тем выше, чем сложнее аксиоматическая система.

Если рассматривать наше мышление с точки зрения аксиом, то оно необычайно сложно – требуется очень большое количество аксиом, необходимых для моделирования мышления. Тем не менее, мышление очень надежно – оно очень редко демонстрирует ломки или остановки. Это связано с тем, что наше мышление, по мнению Пенроуза, не устроено по принципу «аксиомы плюс высказывания» - мозг принципиальным образом отличается от компьютера, описанного выше.



Сэр Роджер Пенроуз (род. 1931)

Получил известность в начале 70 годов как соавтор (вместе со Сивеном Хокингом) теории черных дыр. Кроме того, известны парадоксальные геометрические фигуры и мозаики Пенроуза. Последние были запатентованы Пенроузом как основа многих логических головоломок и игр. Имеет личную страницу в Интернет и сам отвечает на письма.


Человеческое мышление решает алгоритмически неразрешимые задачи, которые поставили бы в тупик любую машину. Этой точкой зрения Пенроуз оппонирует Тьюрингу – машина не может мыслить, так как процессы мышления принципиально не представимы в рамках алгоритмов – например, алгоритмов машины Тьюринга.

Мышление, по мнению Пенроуза, является квантовой системой – мозг может производить вычисления на алгоритмически неразрешимых задачах, аксиоматические системы которых нелокальны – находятся в особых "квантово-механических" состояниях.

Мозг умеет переходить от "квантово-механического" состояния – алгоритмически неразрешимого и нелокального к "классическому" через некую (весьма загадочную в рассуждениях Пенроуза) редукционную функцию – функцию локализации мышления в мысли.

Эти туманные рассуждения Пенроуза можно метафорически проиллюстрировать фрактальной логикой.

Если представить логический фрактал как процесс определения аксиоматической системой истинности или ложности высказывания, то он является, по определению, нелокальной системой с точки зрения внешнего наблюдателя. Логическое значение логического фрактала нелокализовано в локальном знаке.

Поэтому логический фрактал может стать метафорой "квантомеханического состояния" в терминологии Пенроуза.

Аналогом классического или локализованного состояния аксиоматической системы будут ряды ИВ или ЛВ. Кроме того, мы будем считать классическим высказыванием и высказывания с аттрактором первого рода.

Ясно, что аналогом локального состояния могут стать законы фрактальной логики.

А вот пример "редукционной функции" или процедуры локализации, где А – логический фрактал: