Общая теория статистики
Методическое пособие - Математика и статистика
Другие методички по предмету Математика и статистика
?мается и не возвращается в совокупность, что даёт более точные результаты по сравнению с повторным отбором, т.к. при одном и том же объёме выборки охватывается большее количество единиц обследуемой совокупности.
Количество отобранных единиц обычно определяется, исходя из принятой доли выборки.
Доля выборки - отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности.
Применяя выборочный метод в статистике, обычно используют два основных вида обобщающих показателей:
. Среднюю величину количественного признака;
. Относительную величину альтернативного признака (долю или удельный вес единиц, которые отличаются от всех других единиц данной совокупности только наличием изучаемого признака).
Выборочная доля (?''омега ? частость) определяется отношением числа единиц, обладающих изучаемым признаком (m) к общему числу единиц выборочной совокупности (n): .
Ошибка выборки (E) представляет собой разность соответствующих выборочных и генеральных характеристик.
Для средних количественного признака: .
Для доли альтернативного признака: .
Конечной целью выборочного наблюдения является характеристика генеральной совокупности на основе полученных результатов.
Выборочные средние и относительные величины распространяются на генеральные совокупности с учётом предела их возможной ошибки.
Фактические расхождения, т.е. разница между выборочной средней и генеральной средней, могут рассматриваться как некая предельная ошибка, связанная со средней ошибкой и гарантированная с определённой вероятностью P.
P = Ф(t), где t - коэффициент доверия.
t1,01,962,02,583P = Ф(t)0,683…0,954…0,997
Для стабильного процесса t=2, для нестабильного процесса t=3.
Предельная ошибка выборки позволяет определить предельные значения характеристик выборки и их доверительные интервалы:
;
, .