Теоретические и методические аспекты изучения темы "Интегральное исчисление функции нескольких переменных"

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

µ знаки. Числа можно рассматривать, как криволинейные координаты точек этого угла. Их и называют эллиптическими координатами. Три семейства координатных поверхностей - это и будут семейства эллипсоидов, однополостных и двуполостных гиперболоидов, о которых была речь выше.

Якобиан преобразования имеет вид:

 

[3].

 

2.3 Выражение объема в криволинейных координатах

 

Возвращаясь к предположениям и обозначениям п 1.1, поставим себе задачей выразить объем (ограниченного) тела в пространстве . Иным интегралом, распространенным на соответствующее тело в пространстве .

Искомый объем выражается, прежде всего поверхностным интегралом второго типа:,распространенным на внешнюю сторону поверхности . Отсюда постараемся перейти к обыкновенному двойному интегралу.

Будем исходить из параметрических уравнений (21) поверхности (23)( изменяются в области на плоскости ). Тогда уравнения (22) выразят, очевидно, поверхность .

Полагая , имеем:.

При этом интеграл берется со знаком плюс, если ориентация поверхности , связанная с рассмотрением внешней ее стороны соответствует ориентации плоскости , что всегда можно предположить [1].

Так как зависят от через посредство переменных , то, по известному свойствy функциональных определителей:

 

.

 

Подставляя выражение в полученный выше интеграл, найдем:

 

. (25)

 

Сопоставим этот интеграл с поверхностным интегралом второго типа, распространенным на внешнюю сторону поверхности :

 

. (26)

 

Если его преобразовать, исходя из параметрических уравнений (21) к обыкновенному двойному интегралу придем как раз к интегралу (24). Единственное различие между этими интегралами может заключаться лишь в знаке: если ориентация плоскости соответствует ориентации поверхности , связанной с рассмотрением внешней ее стороны, то интегралы равны, в противном же случае они разнятся знаками [1].

Наконец, от интеграла (26) по формуле Остроградского можно перейти к тройному интегралу по области :

 

.

 

Подинтегральное выражение равно:

 

 

Сумма, стоящая здесь в первой строке, равна якобиану:

,

 

в чем легко убедиться, разлагая этот определитель по элементам последней строки; сумма же в квадратных скобках, как показывает непосредственное вычисление, равна нулю. Таким образом, приходим к формуле:

 

.

 

Если вспомнить, что по предположению якобиан сохраняет знак, который он сообщает и интегралу, то станет ясно (так как здесь считаем ), что знак перед интегралом должен совпасть со знаком якобиана. Это дает нам право переписать полученный результат в окончательной форме:

 

(27)

 

или, обозначая якобиан для краткости через :

 

. (27*)

 

Подинтегральное выражение

 

обычно называют элементом объема в криволинейных координатах [4].

 

.7 Замена переменных в тройных интегралах

 

С помощью выражения объема в криволинейных координатах нетрудно установить и общую формулу замены переменных в тройных интегралах.

Пуста между областями и пространств и cyществует соответствие, охарактеризованное в п0 2.1. Считая соблюденными все условия, при которых была выведена формула (26), покажем теперь, что имеет место следующее равенство

 

(28)

 

где , вполне похожее формуле замены переменных в двойных интегралах. При этом функцию предполагаем непрерывной или, самое большее, допускающей разрывы вдоль конечного числа кусочно-гладких поверхностей (но во всяком случае сохраняющей ограниченность). Таким образом, существование обоих интегралов в равенстве (28) не вызывает сомнений; нужно установить лишь самое равенство [2].

Разложив кусочно-гладкими поверхностями области и на (соответствующие друг другу) элементарные части и , применим к каждой паре областей , формулу (25); получим

 

, (29)

 

где есть некоторая точка области не зависящая от выбора. Возьмем соответствующую точку области , т. е. положим

 

, , , (30)

 

и составим интегральную сумму для первого из интегралов (28):

 

.

 

Подставив сюда вместо , , выражения (30), а вместо -выражение (28), придем к сумме

 

,

 

которая, очевидно, уже является интегральной суммой для второго из интегралов (28).

Устремим к нулю диаметры областей , вследствие чего в силу непрерывности соответствия устремятся к нулю и диаметры областей . Сумма должна стремиться одновременно к обоим интегралам, откуда и следует требуемое равенство.

Как и в случае двойных интегралов формула (28) имеет место и при нарушении сформулированных выше при доказательстве формулы (26) предположений в отдельных точках или вдоль конечного числа кусочно-гладких линий и поверхностей, лишь бы якобиан сохранял ограниченность.

Можно пойти дальше при расширении условий применимости формулы (28), допуская и несобственные интегралы. Подчеркнем еще раз, что при указанных там условиях формула имеет место в предположении существования одного из интегралов (28), существование другого отсюда уже будет вытекать [2].

В заключение упомянем, что формулы (26) и (28) могли быть написаны и без знака абсолютной величины при якобиане. Для этого чтобы иметь право на это, следовало бы ввести понятие об ориентированном теле (в связи с ориентированием его границы), затем в зависимости от его ориентации приписывать тот или другой знак его объему и распростра