Состав комплекса "Воздушный старт"

Дипломная работа - Транспорт, логистика

Другие дипломы по предмету Транспорт, логистика



kg - коэффициент адиабаты продуктов реакции при T=Tbg и давлении 100*105Па;

Для определения теплоотдачи в стенки трубопровода и цилиндра необходимо знать значения коэффициентов вязкости продуктов реакции ? и теплопроводности продуктов реакции ? как функции от температуры, а также те же параметры для воздуха. При проведении расчетов определяется доля воздуха в смеси, и по зависимостям для смеси газов определяются вязкость и теплопроводность смеси.

5.2 Требования к твердому топливу для зарядов газогенераторов

  • температура горения топлива при постоянном давлении, не должна превышать 2200-2300 К. В противном, случае температуры стенок элементов газовых приводов (в особенности, выходных отверстий газогенератора и внутренней поверхности трубопровода), достигнут слишком высоких значений, что может привести к малоцикловому разрушению элементов после нескольких пусков, потребует усложнения конструкции узлов отверстий и увеличения толщин стенок из условия прочности.
  • желательно, чтобы минимальное давление устойчивого горения топлива было менее 3-4 МПа, а максимальное - более 22-25МПа. (Топливо НМФ-2, которое рассматривалось при проведении расчетов, имеет минимальное давление устойчивого горения 5МПа).
  • скорость горения при давлениях 15-20МПа должна быть не менее 8-10 мм/с. При меньших значениях толщина сгоревшего слоя окажется менее 3 мм. Изготовить бронированную шашку с такой толщиной заряда сложно, кроме того, сложно обеспечить прочность такой шашки при ее воспламенении.
  • необходимо обратить внимание на возможность догорания - реакции продуктов сгорания топлива, имеющих избыток горючего, с кислородом воздуха. Процесс догорания может начинаться не сразу, ему предшествует процесс смешения продуктов сгорания с воздухом. Происходит задержка догорания. Задержка высокотемпературных смесевых топлив мала и не оказывает влияния на процесс. Задержка баллиститных (нитроглицериновых) топлив может достигать несколько десятых секунды. При этом начало догорания сопровождается всплеском давления, что может привести к превышению ограничения на допустимое усилие. Поэтому при использовании таких топлив свободный объем вытеснителя заполняется азотом, что исключает возникновение, как всплеска давления, так и повышение температуры газов. Низкотемпературные составы, как правило, не догорают.

5.3 Схема газогенераторов

Газогенератор (рис 1) состоит из силового корпуса 4, заряда (одной или нескольких шашек твердого топлива) 5, элементов крепления заряда 3, которые должны дополнительно выполнять роль амортизатора защищая заряд от воздействия динамических нагрузок (при транспортировке), сопла 7 ограничивающего расход газа из газогенератора, диафрагмы 6 препятствующей попаданию элементов заряда в сопло, особенно на заключительных этапах работы. Для запуска газогенератора используется воспламенитель, который состоит из собственно воспламенителя 2 содержащего, как правило, заряд черного пороха и электровоспламенителя 1 с герметичным выводом электрической цепи. В некоторых случаях для исключения попадания твердых частиц образующихся при горении топлива в силовой цилиндр применяется фильтр представляющей спрессованный моток проволоки выполненной из материала с высокой температурой плавления. При повышенных временах работы газогенератора или при использовании смесевых порохов (топлив) корпус газогенератора необходимо защищать от воздействия высоких температур. Для этого на внутренние металлические поверхности наносится слой теплозащитного материала, который при тепловом воздействии подвергается эрозионному разрушению поглощая при этом поступающее тепло. Если корпус газогенератора выполнен из композиционного материала то эрозионному разрушению подвергается сам корпус. Поэтому толщина стенок корпуса должна быть увеличена с учетом толщины разрушенного материала. Газогенератор или непосредственно крепится к силовым цилиндрам, или соединяется с ними при помощи трубопроводов 8.

Корпус газогенератора и диафрагмы изготовлены из теплостойкой стали 12МХ. Состав стали: C - 0,09-0,16; Mn - 0,4-0,7; Si - 0,17-0,37; Cr - 0,4-0,7; Mo - 0,4-0,6. Данная сталь не обладает высокой прочностью (), однако, обладает высокой теплопроводностью. Это позволяет снизить термонапряжения, а также температуру внутренней (горячей) стенки. Основной причиной разрушения подобных узлов являются трещины, возникающие вследствие малоцикловой усталости, когда из-за термонапряжений, а также напряжений от сил давления, напряжения в отдельных точках превышают предел текучести, и возникают пластические деформации. Циклический переход напряжений из упругой области в пластическую, и обратно (циклы прогрева и охлаждения) приводят накоплению повреждений. В некоторых случаях усталостные разрушения могут наступить после нескольких пусков газогенератора. Использование таких сталей позволяет получить максимальный ресурс корпуса газогенератора, в то время, как использование высокопрочных сталей позволяет создать газогенератор минимальной массы. Тем не менее, опыт работы с такими изделиями показывает, что даже при использовании указанных сталей после нескольких десятков пусков происходит постепенное насыщение поверхностных слоев металла (соприкасающихся с горячими газами) углеродом и водородом. Это приводит к увеличению поверхностной твердости, увеличению хрупкости, снижению теплопроводности и пластичности и, в конечном счете, к образованию м