Синтез и исследование алкилсалицилатных присадок

Дипломная работа - Химия

Другие дипломы по предмету Химия



В»едствие, разрушаются сольватные оболочки. Мицелла разрушается, наступает коагуляция частиц карбоната кальция (ядер) и выпадение их в осадок. Щёлочность присадки, обусловленная карбонатом и гидроксидом кальция, резко падает, доходя до нулевой.

Вода загружается в реактор карбонатации в малом количестве для того, чтобы её было не достаточно для эффективной сольватации мицеллы, изображённой на рис. 1. Это необходимо для того, чтобы данную мицеллу сольватировала не вода, а алкилсалицилат кальция (далее АК). Для этого нужно, чтобы мицелла, образовавшаяся в водной фазе, смогла попасть в органическую фазу и там просольватироваться алкилсалицилатом кальция. Эту задачу решает метанол: его роль как промотора процесса карбонатации состоит в том, что он выступает посредником между водной и органической фазами.

Возникает вопрос: почему мицелла, изображённая на рис. 1 сольватируется именно АК, а не метанолом?

Дело в том, что в диффузионном слое мицеллы находятся анионы. Для сольватации анионов нужен положительный заряд. А ?+ на атоме кальция в молекуле АК больше, чем на атоме водорода ОН-группы молекулы метанола.

Поэтому в данном случае АК имеет большую сольватирующую способность, чем метанол.

Механизм действия высокощелочных моющих присадок алкилсалицилатного типа состоит в том, что благодаря наличию полярной части в алкилсалицилатных остатках, торчащих наружу из мицелл присадок, эти мицеллы адсорбируются на поверхности детали двигателя, и при этом своей массой вытесняют с этой поверхности грязь, которая удерживается на поверхности менее прочно, чем эти мицеллы. Наличие на поверхности детали двигателя адсорбированных мицелл не препятствует работе детали, а наоборот, облегчает эту работу, благодаря тому, что эти мицеллы оказывают смазывающее действие.

Механизм действия низкощелочных моющих присадок алкилсалицилатного типа в целом аналогичен, только адсорбируются не мицеллы, а молекулы алкилсалицилата кальция.

Ещё одна роль алкилсалицилатных присадок состоит в том, что они благодаря своей щёлочности нейтрализуют сернистую кислоту, которая образуется при сгорании в двигателе серусодержащих топлив, и тем самым защищают детали двигателя от кислотной коррозии. Действительно, при сгорании топлива в двигателе всегда образуется вода. Если же топливо содержало серу, то образуется ещё и SO2. В итоге происходит образование сернистой кислоты:

Чем выше щёлочность присадки, тем большее количество сернистой кислоты она может нейтрализовать. Действительно, если в топливе содержится немного серы, то для нейтрализации Н2SO3 достаточно обычного количества среднещелочной присадки. Если же используемое топливо является высокосернистым, то сернистой кислоты образуется много и для нейтрализации такого её количества необходимо либо дополнительное количество низкощелочной присадки, либо обычное количество, но высокощелочной присадки. Последний вариант экономически выгоднее первого, потому что СаСО3 и Са(ОН)2 дешевле, чем алкилсалицилат кальция. Поэтому применение высокощелочных алкилсалицилатных присадок необходимо при использовании высокосернистых топлив.

Следует отметить, что наши планы на будущее связаны с разработкой процесса карбонатации iелью получения алкилсалицилатов с щёлочностью выше 180 мг КОН на г.

Выводы

В настоящей работе детально описан процесс получения важных для моторных масел присадок алкилсалицилатного типа. Заключительная стадия данного производства была испытана в лабораторных условиях. Испытание заключалось в том, что для проведения этой стадии использовались алкилсалициловые кислоты, полученные с использованием олигомеров этилена состава С16 - С18 вместо олефинов фракции 240-320 С термокрекинга парафинов. Олефины термокрекинга парафинов содержат много парафинов и кислородсодержащих соединений. Из-за этого процесс алкилирования фенола с использованием данных олефинов протекает неэффективно, образуется много отходов. Олигомеры этилена содержат намного меньше парафинов (см. таблицы 2 и 3) и кислородсодержащих соединений, и, кроме того, имеют меньший разброс по длине углеродных цепей входящих в их состав углеводородов (см. те же таблицы).

Поэтому целесообразно перейти на использование в производстве алкилсалицилатных присадок олигомеров этилена состава С16 - С18 вместо олефинов фракции 240-320 С термокрекинга парафинов.

Возможность осуществления данного перехода и была проверена в ходе наших лабораторных исследований. Полученные в результате проведённого испытания Детерсолы отвечают требованиям научно-технической документации по основному показателю общая щёлочность, что было проверено нами в ходе проведения опыта 5. Таким образом результаты проведенных лабораторных исследований свидетельствуют о том, что использование в производстве алкилсалицилатных присадок олигомеров этилена состава С16 - С18 вместо олефинов фракции 240-320 С термокрекинга парафинов позволяет получать присадки Детерсол-50, Детерсол-140 и Детерсол-180, отвечающие требованиям научно-технической документации по основному показателю общая щёлочность.

Список литературы

1. Исагулянц В. И., Фёдорова Р. И., Кустанович З. Д. и др. Алкилирование метилового эфира салициловой кислоты олефинами // Химия и технология топлив и масел. - 1968. -№8. -С.15-19.

2. Broaddus C. D. Metallation of Toluene. The question of kinetic v. s. Thermodynamic control // J. Amer. Chem. Soc. - 1966. - 88 , №18. - P. 4174-4178.

3. Benkeser R. A., Hooz J., Liston T. V. at al. Fact