Противообледенительная система авиационных силовых установок
Контрольная работа - Транспорт, логистика
Другие контрольные работы по предмету Транспорт, логистика
?имального значения у корня до минимального на конце лопасти.
1.3.3 Прочие виды противообледенительных систем
Для защиты силовых установок от обледенения, кроме отмеченных выше, могут применяться следующие тепловые системы:
-с обогревом защищаемых поверхностей маслом. Этот способ аналогичен обогреву горячим воздухом, однако конструктивно значительно сложнее. В настоящие время он применяется для защиты от обледенения отдельных элементов ТВД (например, ребер лобового картера). Система не находит широкого распространения вследствие ограниченного запаса тепловой энергии;
-с обогревом лопаток ротора компрессора двигателя вихревыми токами (токами Фуко). Система может быть применена в случае стальных лопаток и некоторых конструктивных изменений ступеней компрессора.
На некоторых типах летательных аппаратов для защиты воздушных винтов от обледенения применяют жидкостную систему противообледенения, основанную на принципе смачивания поверхностей, подверженных обледенению, специальными жидкостями. Некоторые из этих жидкостей препятствуют сцеплению капель воды и кристаллов льда с защищаемой поверхностью, другие растворяют кристаллы льда, образуя состав с более низкой температурой замерзания, чем температура наружного воздуха. Указанный способ защиты вследствие существенных недостатков (большой расход жидкости, малая эффективность из-за неполного смачивания защищаемых поверхностей, пожарная опасность) не получил широкого распространения.
Для защиты от обледенения вращающихся деталей силовой установки (например, воздушных винтов) разрабатывают специальные кремнийорганические соединения, которые имеют небольшую силу сцепления со льдом. Благодаря этому ледяная корка, достигая определенной толщины, сбрасывается с защищаемых поверхностей центробежной силой. Предполагается, что и на неподвижных поверхностях летательного аппарата (крыло, хвостовое оперение и т. п.) при помощи указанных покрытий в комбинации с подогревом можно достигнуть снижения потребной мощности тепловых систем.
При выборе типа противообледенительной системы необходимо учитывать ее вес, возможность конструктивного выполнения нагревательного пакета на защищаемой поверхности, его преимущества по отношению к другим типам пакетов, возможность наиболее экономного использования энергии, отбираемой от двигателя, расположение источников энергии относительно обогреваемых поверхностей, степень влияния отбора энергии на характеристики летательного аппарата.
1.4 Предотвращение обмерзания агрегатов
При эксплуатации топливных систем наблюдаются случаи обмерзания некоторых агрегатов и деталей, размещенных в баках и в заборных магистралях. Это, прежде всего, топливные фильтры, обратные клапаны, устройства для обеспечения питания двигателей топливом при действии отрицательных перегрузок, предохранительные сетки. Основной причиной обмерзания этих агрегатов является кристаллизация переохлажденных капель эмульсионной воды в результате соударения их с холодной поверхностью фильтра или другими агрегатами топливной системы.
Все сорта авиационных топлив обладают гигроскопичностью (способностью поглощать влагу). Содержание растворенной воды в топливе зависит от его химического состава, температуры, а также влажности окружающего воздуха. Чем ниже молекулярный вес топлива и чем больше в нем ароматических углеводов, тем ниже его гигроскопичность. С повышением влажности воздуха содержание растворенной воды в топливе увеличивается.
При уменьшении температуры окружающего воздуха происходит понижение температуры топлива в баках. Установлено, что при 4-5-часовых беспосадочных полетах на высоте 7000-9000 м независимо от времени года и температуры воздуха на земле температура топлива в мягких баках понижается до минус 15-20С, а в металлических - до минус 35-40С. При охлаждении топлива содержание воды в нем не может превысить ее растворимости при данной температуре и избыток воды выделяется из топлива в свободном состоянии. Выделившиеся капли первоначально находятся во взвешенном состоянии, равномерно распределяясь по всему объему топлива. Под действием вибраций конструкции летательного аппарата и топливных баков происходит слияние мелких капель в более крупные, которые оседают и скапливаются в нижнем слое топлива, образуя эмульсию. Чем продолжительнее полет, тем больше охлаждается топливо и, следовательно, большая часть растворенной воды выделится и будет находиться в топливе в виде эмульсии.
Образование переохлажденных капель эмульсионной воды в топливах происходит сравнительно редко и только при благоприятных условиях. В большинстве случаев выделившаяся из топлива вода сразу замерзает, превращаясь в кристаллы льда.
Кристаллы льда в топливе могут появиться в результате осыпания инея со стенок баков. Конденсация влаги из воздуха вследствие понижения температуры происходит не только на стенках баков, но и на поверхности охлажденного топлива. Причем влага, конденсирующаяся на поверхности топлива, не сразу замерзает, а вначале распространяется в топливе и только через некоторый промежуток времени, когда она сильно охладится, начинается процесс ее кристаллизации с образованием льда.
Для предупреждения образования в топливе переохлажденных капель воды и кристаллов льда применяют различные способы. Наиболее простым из них является добавление к топливу специальных присадок, увеличивающих раствори