Основы теории и технологии контактной точечной сварки

Методическое пособие - Разное

Другие методички по предмету Разное

?ических задач КТС, в частности определения силовых параметров режимов сварки, возникает необходимость в расчетном определении размеров ядра (как правило, его диаметра и высоты) и средних значений температуры в определенных участках зоны формирования соединения.

Размеры ядра расплавленного металла можно определить по положению изотермы температуры плавления, в частности, высоту hЯt и диаметр dЯt ядра можно определить по координатам пересечения изотермы температуры плавления ТПЛ с координатными осями z и r. Положение изотермы любой температуры в зоне формирования соединения в любой момент времени можно определить из зависимости (3.36), если значение температуры изотермы ТИ подставить в ее левую часть. После преобразований получаем выражение:

, (3.39)

которое является общеизвестным [208] уравнением эллипса, но только с изменяющимися по времени полуосями.

Например, расположение изотерм (рис. 3.16), показанных сплошными линиями и рассчитанных по зависимости (3.39) для тех же условий сварки, для которых они рассчитывались в работе [165] решением дифференциальных уравнений методом конечных разностей (пунктирные линии), почти совпадают между собой. В частности, в приведенном примере положение изотермы ТИ = 600 С показывает контур ядра расплавленного металла (температура плавления ТПЛ сплава АМг6 ~ 623 С). Причем изотерма ТИ = 600 С, рассчитанная по зависимости (3.39), в большей мере совпадает с контуром ядра, определённым по макрошлифу. Это объясняется тем, что расчетно-экспериментальный метод закладываются конечные размеры (высота hЯ и диаметр dЯ) ядра. Таким образом, при ТИ = ТПЛ зависимость (3.39) описывает контур ядра расплавленного металла:

.

Поскольку полуоси эллипса изотермы температуры плавления равны половине высоты и диаметра ядра, то по этой зависимости можно определить их значения в любой момент времени t процесса формирования ядра. После преобразований получены формулы для расчета высоты hЯt и диаметра dЯt ядра в любой момент времени t после начала плавления металла (времени tНП, которое можно определить по зависимости (3.37)) до окончания импульса сварочного тока (при tНП< t ? tСВ) [217]:

, (3.40)

, (3.41)

где azt и art коэффициенты, характеризующие изменение градиентов температуры по координатам z и r, которые можно определить по зависимости (3.36) с использованием данных табл. 3.2.

Изменение высоты и диаметра ядра в процессе его формирования, рассчитанные по формулам (3.40) и (3.41), вполне согласуются с данными, полученными из практики КТС (рис. 3.17). Данные формулы дают удовлетворительную сходимость расчетных и экспериментальных результатов (показаны точками), расхождение которых не превышает 10 %.

 

Среднюю температуру по одной из координат z или r, или же по участку плоскости z r в момент времени t можно определить из зависимости (3.36), используя общеизвестную [208] теорему о среднем, согласно которой средняя температура по координатам z или r на участках z2 z1 или r2 r1, а также по элементу площади SПt в плоскости z r, может быть выражена следующими зависимостями:

,

,

.

Точные вычисления средних значений температуры в зоне сварки по приведенным выше зависимостям невозможны из-за того, что интегралы вида , которые содержатся в вышеуказанных зависимостях, при четных значениях n аналитически не вычисляются [208]. В таких случаях, как правило, подобные интегралы путем подстановок сводят к интегралам, значения которых вычислены приближенными методами. Для данного случая наиболее подходящим из вышеуказанных является интеграл вида erf (y), который называют erf-функцией или функцией ошибок. Его табличные значения приведены справочниках, например, в [208].

После подстановок, вычисления интегралов и преобразований зависимости для количественных расчетов средних значений температуры в зоне сварки по координатам z или r, а также по площади SПt в плоскости
z r, имеют следующий вид:

, (3.42)

, (3.43)

, (3.44)

где для момента времени t, Т(z,t)ср средняя температура по координате z на участке z2 z1 при любом значении r; Т(r,t)ср средняя температура по координате r на участке r2 r1 при любом значении z; Т(z,r,t)ср средняя температура по любому прямоугольному элементу площади в плоскости оси электродов z r; erf (y) функция ошибок, которая представляет собой интеграл вида

.

Для распределения температуры в зоне сварки Tz и Tr по координатам z и r (рис. 3.18), рассчитанного по зависимости (3.36) для момента окончания нагрева, значения средней температуры по координатам z и r в пределах ядра расплавленного металла (кривая 1), на оси электродов от границы ядра hЯ до поверхности листа, толщиной s (кривая 2), в плоскости свариваемого контакта между границами ядра dЯ и пояска dП (кривая 3), рассчитанные по зависимостям (3.42) и (3.43), а также значение средней температуры в плоскости z r по площади зоны сварки, которая ограничена уплотняющим пояском dП и поверхностью свариваемых деталей, рассчитанное по зависимости (3.44) при z1 = r1 = 0, z2 = s, r2 = d<