Основы теории и технологии контактной точечной сварки
Методическое пособие - Разное
Другие методички по предмету Разное
?дящих электродов FЭ и обжимных втулок FО. В плоскости сварочного контакта эти усилия уравновешиваются силой FЯ, развиваемой давлением расплавленного металла в ядре (диаметром dЯ) по его площади, усилием в площади уплотняющего пояска FП и усилием в площади кольцевого контакта FК, расположенного вне контура уплотняющего пояска L1. Вследствие того, что при сварке металл вытесняется в направлении контакта детальдеталь с образованием в контуре уплотняющего пояска L1 рельефа высотой hП, представляется возможным передавать часть усилия обжатия FО в зону сварки (в контур L1) за счет силового сопротивления деталей FУ их прогибу между контурами уплотняющего пояска L1 и кольцевого контакта L2. Таким образом, в зону сварки может быть передана часть усилия обжатия FО, прилагаемого между контурами L2 и L3, за вычетом его части, уравновешиваемой в кольцевом контакте FК и упругим сопротивлением деталей FД при их сближении до соприкосновения (передаваемое усилие не может быть больше усилия FУ сопротивления деталей их суммарному прогибу между контурами L1 и L2 на величину высоты рельефа hП). Это предоставляет возможность увеличить внутренние диаметры обжимных втулок dВВ и диаметры DЭ электродов и, следовательно, их стойкость.
Так, например, производилась сварка образцов из стали 12Х18Н10Т на машине МТПУ-300 с использованием цилиндрических обжимных втулок и электродов с плоской рабочей поверхностью из сплава Бр.Х. Параметры режимов, максимально допустимые внутренние диаметры обжимных втулок dВВМАХ, при которых обеспечивалась передача упругостью деталей технологически требуемого усилия сжатия в площади уплотняющего пояска (в приведенных примерах 95 % от FО) приведены в табл. 3.1.
При этом диаметры рабочих поверхностей dЭ задавались в соответствии с известными рекомендациями для обычных способов сварки, обеспечивающих наибольшую стойкость электродов. Диаметры же цилиндрических поверхностей электродов DЭ задавались по внутреннему диаметру обжимной втулки dВВ, которые определяли из условий способов: при сварке по способу с обжатием в области уплотняющего пояска dВВ задавались в пределах контура уплотняющего пояска dП, а при сварке по данному способу в пределах dВВМАХ.
Таблица 3.1
Параметры режимов и электродов при сварке с обжатием периферийной зоны соединения
Толщина
деталей
s,
ммПараметры режимовПараметры соединения и
электродов, ммIСВ,
кАtСВ,
cFСВ,
даНFЭ,
даНFО,
даНdВВМАХ
ммdЯ,
ммdЭdПDЭПрото
типНовый1+1
2+2
3+36,2
8,9
11,30,16
0,28
0,36460
900
1350270
548
830190
360
5207,7
15
345.0
7.0
9.05.0
8.0
10.06.5
9.4
11.96,0
9,0
11.08,0
16,0
25,0
Стойкость электродов оценивалась по количеству сваренных точек, приводящих к увеличению рабочих поверхностей электродов на 10 %. При этом получены следующие результаты: при сварке по способам с обжатием в области уплотняющего пояска и вне его среднеарифметическое количество точек при сварке трех серий образцов каждой толщины соответственно составило: 1 + 1 мм 17 и 63; 2 + 2 мм 23 и 187; 3 + 3 мм 27 и 276. Таким образом, стойкость электродов при сварке по данному способу увеличивается в 4...10 раз, что показывает высокую эффективность данного способа в части повышения стойкости электродов.
Очевидно, что для способов КТС с обжатием периферийной зоны соединений необходима другая математическая модель силового взаимодействия деталей, учитывающая их особенности.
3.2.2. Математическая модель термодеформационного равновесия процесса контактной точечной сварки с обжатием периферийной зоны соединения
Математическая модель термодеформационного равновесия процесса контактной точечной сварки с обжатием периферийной зоны соединения [210...212], от модели термодеформационного равновесия при традиционных способах КТС, описанной выше, отличается в основном математическим описанием деформационных процессов, протекающих вне контура уплотняющего пояска. Особенности этих процессов, в частности, возможность разделения в процессе формирования соединения контакта детальдеталь на два отдельных, установлены экспериментально (рис 3.3).
Причиной разделения контакта детальдеталь являются прогибы ?1 и ?2 свариваемых деталей 3, вследствие увеличения высоты hП уплотняющего пояска между ними в процессе КТС с обжатием периферийной зоны соединения, которое происходит вследствие дилатации и объемных пластических деформаций металла в зоне сварки. В результате из общего контакта детальдеталь, который формируется при сжатии холодных деталей, образуются два раздельных: свариваемый контакт, который формируется как и при традиционных способах КТС в площади уплотняющего пояска, ограниченного наружным контуром L1t, и замкнутый кольцевой контакт в области сжатия деталей обжимными втулками (с внутренним L2t и наружным L3t контурами). Это возможно в том случае, если внутренний контур обжимных втулок L4 больше контура уплотняющего пояскаL1t, т. е. в том случае, если обжатие осуществляется вне контура уплотняющего пояска.
В рассматриваемой модели процесса формирован