Основы теории и технологии контактной точечной сварки

Методическое пособие - Разное

Другие методички по предмету Разное

?ранил это решение на случай упругопластического деформирования внутренним давлением толстостенной сферической оболочки. Согласно этому решению распределение напряжений в толстостенной сферической оболочке при упругопластическом ее деформировании внутренним давлением Р (слева на рис. 3.24) описывается следующими зависимостями: в упругой области, при c ? r ? b0

, (3.53)

в пластической области, при а ? r < с

, (3.54)

где a радиус полости; b0 наружный радиус сферы; с радиус границы пластической области.

В упругой области оба компонента напряжения уменьшаются с увеличением координаты r. В области пластических деформаций с увеличением r радиальное напряжение уменьшается по величине, тогда как, по условию пластичности, окружное напряжение увеличивается. Максимальное значение окружного напряжения достигается на границе пластического и упругого состояний металла (радиус с). Аналогичный характер изменения напряжений по координате r получен при решении подобной задачи и в работе [225].

Экспериментально установлено (см. п. 2.5.2), что на стадии нагрева максимальные относительные пластические деформации свариваемых деталей по координате r, достигающие 15 %, локализованы в области контура сварочного контакта, диаметром dПt, и в узком поясе (шириной
? 0,05...0,15 dПt) вокруг него. Упругие же радиальные деформации свариваемых деталей вне этой зоны незначительны, и поэтому ими можно пренебречь. Тогда процесс деформации металла в зоне формирования соединения при контактной точечной сварке можно уподобить процессу деформации металла сферической оболочки с бесконечно толстыми стенками,
т. е. при b0 > ? (справа на рис 3.24).

 

Так как металл, выдавливаемый в зазор детальдеталь, при несвободном расширении в площади уплотняющего пояска, шириной , преодолевает силу реакции противоположной детали, то можно предложить, что он находится в объемно-сжатом напряженном состоянии аналогично металлу зоны а д при деформации сферической оболочки. При сварке давление в ядре и напряжения в уплотняющем пояске стремятся раздвинуть свариваемые детали аналогично тому, как и давление в полости сферы и напряжения в зоне объемно-сжатого металла
а д при деформировании сферической оболочки. При деформировании сферической оболочки разъединению полусфер препятствует металл с растягивающими окружными ?? напряжениями при r > c, в процессе же сварки разъединению деталей препятствует усилие сжатия электродов FЭ. Поскольку ядро в плоскости свариваемых деталей имеет форму круга, в плоскости оси электродов эллипса, а пластические деформации металла локализованы в области уплотняющего пояска, то можно допустить, что характер напряженного состояния пластически деформируемого металла в приконтактной области уплотняющего пояска подобен характеру напряженного состояния металла в объемно-сжатой зоне а д при деформировании сферической оболочки с бесконечно толстой стенкой.

Поэтому процесс деформации металла в зоне сварки на стадии роста ядра можно приближенно уподобить процессу деформации при расширении сферической полости в оболочке с бесконечно толстыми стенками, если оболочку мысленно рассечь по диаметральной плоскости, и сумму растягивающих окружных напряжений ??, при r > д заменить усилием сжатия электродов, т. е. принять, что:

. (3.55)

Таким образом, определить давление Р в ядре можно, решая задачу только в пластической области, так как упругие деформации влияния на его величину практически не оказывают. При этом контуром уплотняющего пояска можно считать границу металла при деформировании сферической оболочки, находящегося в объемно-сжатом состоянии.

Тогда изменение напряжений по координате r в пластической области (а ? r < с) при b0 > ?, согласно зависимостям (3.54) можно описать следующим образом:

. (3.56)

Более точные результаты, по мнению ряда исследователей [220, 225], получаются при использовании условия пластичности не Треска Сен-Венана (3.52), а Губера Мизеса (3.45).

При высоких скоростях деформации и высокой температуре деформируемого металла, что имеет место при точечной сварке, деформируемость металла точнее характеризуется не пределом текучести ?Т, а сопротивлением пластической деформации ?Д металла с учетом процессов его упрочнения и разупрочнения [226]. Поэтому для условий пластической деформации металла при точечной сварке предел текучести ?Т в условии пластичности (3.45) рационально заменить сопротивлением пластической деформации ?Д . Тогда давление в полости сферической оболочки, которое равно радиальному напряжению металла на поверхности полости, но с обратным знаком, необходимое для осуществления пластического течения металла до радиуса с, по зависимости (3.56) можно рассчитать следующим образом:

. (3.57)

Координату пластической области с можно выразить через координату д границы объемно-сжатого металла из зависимостей (3.56), так как при r = д окружные напряжения ?? = 0. После преобразований получаем следующее соотношение с и д:

. (3.58)

Согласно принятой модели можно записать следующее соотношение координат элементов сферической оболочки и зоны сварки: д = dПt /2, а
а = dЯt