Основы теории и технологии контактной точечной сварки
Методическое пособие - Разное
Другие методички по предмету Разное
?стью, образующей которой является контур L1, а направляющей линия, на 10...18 % выходящая за контур уплотняющего пояска:
(см. зависимость (3.58))
осевое пластическое течение (выдавливание) металла, формирующее уплотняющий поясок и являющееся причиной образования вмятин на поверхности электродов, вне контуров контактов детальдеталь и электроддеталь отсутствует.
В любой дискретный момент времени t процесса формирования соединения при КТС на цилиндрический пластически деформируемый объем Vt металла зоны сварки, со стороны жесткого кольца VУ холодного металла, который деформируется только упруго, через относительно узкий пояс металла VУП, находящегося в упругопластическом состоянии, действуют радиальные напряжения ?r. В результате этого при КТС пластическое течение металла возможно в основном лишь в осевом направлении. Перемещение основного объема деформируемого металла, вследствие наличия осевого градиента температуры, происходит в направлении свариваемого контакта (см. п. 2.5.2). При этом элементарные объемы металла при его пластическом течении в зоне сварки перемещаются так же, как при деформации цилиндров 1 и 2, сжатых силами ?1, радиальными напряжениями ?r, которые распределены по боковым их поверхностям (рис. 3.28, б). Таким образом, пластическое течение элементарных объемов металла в зоне сварки при КТС и при деформации цилиндров, напряжениями ?r, распределенными по боковым их поверхностям, происходит так же, как при описанной выше пластической деформации цилиндра при его осадке (см.
рис. 3.27), но только в обратном направлении.
Степень деформации металла в зоне сварки ?t, в любой момент времени t процесса формирования соединения при при контактной точечной сварке, на основании сказанного выше (см. рис. 3.28, б) можно определить по зависимости (рис. 3.29):
, (3.61)
где VСМt и Vt смещенный и деформируемый объемы в момент времени t.
Физическая модель процессов макропластических деформаций при формировании точечных сварных соединений (см. п. 2.5.2) и сделанные выше допущения, позволяют определить смещенный объем металла при КТС (рис. 3.29). В любой момент t процесса формирования точечного сварного соединения смещенный объем металла равен сумме приращения деформируемого объема Vt вследствие температурного расширения, включая и нагрев выше температуры плавления в объеме ядра VЯt, увеличения объема металла ядра VЯt при его плавлении, а также объемов металла и , вытесняемых при вдавливании электродов в детали на глубину c1t и c2t:
. (3.62)
Элементарные объемы dV в разных областях зоны сварки, ограниченной контуром L1, испытывают различное тепловое воздействие, а также претерпевают разные агрегатные превращения. С учетом этого в любой момент t процесса КТС на стадии нагрева приращение смещенного объема из-за температурного расширения металла деформируемого объема Vt, и приращение смещенного объема из-за увеличения объема металла ядра VЯt при его плавлении могут быть определены по следующим интегральным зависимостям:
, (3.63)
, (3.64)
где для момента времени t, ?T(Т) температурный коэффициент объемного расширения; Т(z,r,?,t) функция, описывающая изменение температуры в зоне сварки; ?* коэффициент объемного расширения при плавлении металла, примеры значений которого показаны в табл. 3.3.
Приращения смещенного объема из-за объемов металла и , смещаемых при вдавливании электродов в детали, для момента времени t могут быть определены как объемы геометрических фигур по следующим интегральным зависимостям:
, (3.65)
, (3.66)
где для момента времени t, и функции, описывающие геометрию рабочих поверхностей электродов и их положение относительно поверхностей свариваемых деталей; с1t и с2t глубины вдавливания электродов в поверхности деталей; S1Эt и S2Эt площади соответствующих контактов электроддеталь.
Подставив зависимости (3.63…3.66) в (3.62) получаем интегральное выражение, которое позволяет определить смещенный объем металла VСМt в любой момент процесса точечной сварки:
. (3.67)
Выразив деформируемый объём Vt интегральной зависимостью
и подставив ее совместно с (3.67) в формулу (3.61), получаем интегральное выражение, которое позволяет определить степень пластической деформации металла в зоне формирования точечного сварного соединения, в любой момент времени t на стадии нагрева [203, 240]:
. (3.68)
Для точных расчетов степени деформации при конкретных условиях точечной сварки необходимо в интегральную зависимость (3.68) подставить подынтегральные функции. А именно, функции, которые описывали бы изменение в процессе КТС: объема деформируемого металла; изменения в нем температуры; объ