Информация по предмету Физика

  • 901. Удивительный мир звука
    Другое Физика

    Ослабление звука связано и с тем, что звуковая волна постепенно теряет энергию из- за поглощения ее средой. Степень поглощения опять- таки определяется свойствами среды. В более вязкой среде, например в вате, каучуке, поглощение больше. Однако оно во многом зависит и от частоты звука. Чем больше частота, тем больше поглощение. Звук частоты 10000 Гц поглощается в 100 раз больше, чем звук частоты 1000 Гц. Не случайно орудийный выстрел вблизи кажется нам оглушающе резким, издали - более мягким, глухим. Это объясняется тем, что звук от выстрела пушки содержит в себе как низкие, так высокие частоты, а звуки высоких частот поглощаются в воздухе больше, чем звуки низких частот. Находясь далеко от стреляющей пушки, мы слышим звуки более низких частот, а звуки высоких не доходят до нас - они поглощаются. Еще более наглядный пример, подтверждающий это явление- звучание удаляющегося оркестра. Сначала пропадают высокие звуки флейт и кларнетов, затем средние- корнетов и альтов, и наконец, когда оркестр будет уже совсем далеко, слышен только большой барабан.

  • 902. Ультразвук и его применение
    Другое Физика

    Важнейшим нелинейным эффектом в УЗ-вом поле является кавитация возникновение в жидкости массы пульсирующих пузырьков, заполненных паром, газом или их смесью. Сложное движение пузырьков, их схлопывание, слияние друг с другом и т.д. порождают в жидкости импульсы сжатия (микроударные волны) и микропотоки, вызывают локальное нагревание среды, ионизацию. Эти эффекты оказывают влияние на вещество: происходит разрушение находящихся в жидкости твердых тел (кавитационная эрозия), возникает перемешивание жидкости, инициируются или ускоряются различные физические и химические процессы. Изменяя условия протекания кавитации, можно усиливать или ослаблять различные кавитационные эффекты, например с ростом частоты УЗ увеличивается роль микропотоков и уменьшается кавитационная эрозия, с увеличением давления в жидкости возрастает роль микроударных воздействий. Увеличение частоты приводит к повышению порогового значения интенсивности, соответствующей началу кавитации, которое зависит от рода жидкости, ее газосодержания, температуры и т.д.. Для воды при атмосферном давлении оно обычно составляет 0,31,0 Вт/см2. Кавитация сложный комплекс явлений. УЗ-вые волны, распространяющиеся в жидкости, образуют чередующиеся области высоких и низких давлений, создающих зоны высоких сжатий и зоны разрежений. В разреженной зоне гидростатическое давление понижается до такой степени, что силы, действующие на молекулы жидкости, становятся больше сил межмолекулярного сцепления. В результате резкого изменения гидростатического равновесия жидкость «разрывается», образуя многочисленные мельчайшие пузырьки газов и паров. В следующий момент, когда в жидкости наступает период высокого давления, образовавшиеся ранее пузырьки схлопываются. Процесс схлопывания пузырьков сопровождается образованием ударных волн с очень большим местным мгновенным давлением, достигающим нескольких сотен атмосфер.

  • 903. Універсальні осцилографи
    Другое Физика

    Аналогові осцилографи. Прибори цього типу вважаються класичними представниками загального поняття про осцилограф, як контрольно-вимірювальних приладів. В цілому, будь-який аналоговий осцилограф складається з наступних складових: вхідний дільник, підсилювач вертикального відхилення, схема синхронізації і горизонтального відхилення, джерело живлення та електронно-променева трубка. У осцилографах застосовують електронно-променеві трубки з електростатичним відхиленням, на відміну від телевізорів і моніторів, де використовується магнітне відхилення. Електронно-променеві трубки з електростатичним відхиленням, хоча й більш складні у виготовленні, мають значно більший частотний діапазон. В кожний конкретний момент відхилення електронного променя та світлової плями на екрані, що він утворює, пропорційно напрузі, що додається до пластинам вертикального відхилення. Напруга на пластинах горизонтального відхилення змінюється лінійно, забезпечуючи горизонтальну розгорнення. Нижня частота, при якій картинка ще читається, складає в середньому 10 Гц, хоча при застосуванні спеціальних електронно-променевих трубок з великим часом після підсвічення вона може бути значно нижче. Верхня робоча частота визначається в основному характеристиками підсилювача вертикального відхилення і ємністю між відхиляючими пластинами. В останнім часом цифрові осцилографи, які мають великий ряд переваг, витісняють аналогові прилади з світового ринку, але все-таки традиційні аналогові осцилографи реального часу не зникають повністю, в першу чергу з-за низької вартості в порівнянні з цифровими осцилографа. Плюс до цього з розвитком елементної бази аналогові осцилографи придбали ряд важливих додаткових функцій і можливостей, наприклад, надзвичайно що полегшують роботу курсори з цифровим відліком величин (напруги і часу) і дуже зручний цифрове управління. За допомогою вхідного мультиплексора для декількох каналів можна досить просто організувати єдину розгортку на однопроменевій трубці з відображенням декількох сигналов. Цифрові запам'ятовуючі осцилографи в порівнянні з аналоговими попередниками вони мають більш широкі можливості, а завдяки зниженню вартості цифрових схем з кожним роком вони стають більш доступними потенційним покупцям. У загальному вигляді цифровий осцилограф складається з вхідного дільника, і нормалізуючого підсилювача, аналого-цифрового перетворювача, блоку пам'яті, пристрої управління та пристрої відображення. Пристрій відображення зазвичай виконується на основі рідкокристалічною панелі (див. Рис.4)

  • 904. Управление энергосбережением в Республике Беларусь
    Другое Физика

    К основным техническим приоритетам деятельности до 2005 г. в области энергосбережения относятся:

    • повышение эффективности работы генерирующих источников за счет изменения структуры генерирующих мощностей в сторону расширения внедрения парогазовых и газотурбинных технологий, увеличения выработки электроэнергии на тепловом потреблении, преобразования котельных в мини-ТЭЦ, оптимизации режимов работы энергоисточников и оптимального распределения нагрузок энергосистемы;
    • модернизация и повышение эффективности работы котельных за счет перевода паровых котлов в водогрейный режим, модернизации тепловой изоляции на всех элементах и оборудовании котельных и тепловых сетей; отбора дутьевого воздуха с верхней части здания котельных; установки экономайзеров и других теплообменников для утилизации ВЭР; оснащения котлов автоматикой контроля процессов сжигания и регулирования, либо производственного контроля (мониторинга) топочного режима котлов на базе портативных измерителей тепловых потерь в увязке с режимами потребления тепловой энергии, установки аккумуляторов теплоты и др.;
    • внедрение котельного оборудования, работающего на горючих отходах производства, сельского и лесного хозяйства, деревообработки;
    • снижение потерь и технологического расхода энергоресурсов при транспортировке тепловой и электрической энергии, природного газа, нефти и нефтепродуктов за счет снижения расходов на собственные нужды обслуживаемых подразделений, технического перевооружения и оптимизации режимов загрузки электрических сетей и трансформаторных подстанций, тепловых сетей и тепловых пунктов; компрессорных станций на газопроводах, насосных в тепловых сетях, на нефте- и продуктопроводах с внедрением регулируемого электропривода;
    • создание мини-ТЭЦ на базе ПГУ и ГТУ на компрессорных станциях газопроводов;
    • создание технических условий (объединение тепловых сетей, строительство перемычек, аккумуляторов теплоты и т.п.) для максимальной передачи нагрузок от котельных любых ведомств на ТЭЦ со стоимостью тепловой энергии для владельцев котельных на уровне ее себестоимости на ТЭЦ;
    • наладка и автоматическое регулирование гидравлических и тепловых режимов тепловых сетей (перерасчет и шайбирование, замена сетевых насосов, регулировка и т.п.);
    • замена отопительных электрокотельных на топливные котлы (преимущественно на местных видах, горючих отходах), а также перевод всевозможных электросушильных установок и нагревательных печей (где это целесообразно) на топливоиспользующие установки;
    • внедрение автоматических систем регулирования потребления энергоносителей в системах отопления, освещения, горячего и холодного водоснабжения и вентиляции жилых, общественных и производственных помещений, в технологических установках всех типов;
    • разработка и внедрение новых энергосберегающих технологий при нагреве, термообработке, сушке изделий, новых строительных и изоляционных материалов с улучшенными теплофизическими характеристиками и, в частности, спецдобавок при производстве железобетонных изделий; энерготехнологических комплексов при производстве цемента, стекла, кирпича, переработке нефти, на предприятиях химической и пищевой промышленности и т.п.;
    • дальнейшее развитие системы учета всех видов энергоносителей, включая учет их расхода на отопление жилых помещений, а также внедрение многотарифных счетчиков энергии;
    • максимальная утилизация тепловых вторичных энергоресурсов (горячей воды, конденсата, дымовых газов, вентвыбросов, канализационных стоков) в технологических процессах, системах отопления и горячего водоснабжения промышленных узлов и отдельных городов и населенных пунктов;
    • разработка и внедрение эффективных биогазовых установок для производства горючих газов и удобрений из отходов животноводства, растениеводства, специально выращиваемой биомассы;
    • разработка и внедрение технологии использования бытовых отходов и мусора для топливных целей;
    • внедрение теплонасосных установок на промышленных предприятиях в централизованных и индивидуальных системах отопления;
    • экономически целесообразное внедрение ветро-, гелио- и других нетрадиционных источников энергии;
    • техническое перевооружение автомобильного транспорта и тракторов, включая перевод на дизельное топливо, сжиженный и сжатый природный газ, разработка и внедрение экономичных двигателей, совершенной системы диагностики и регулирования, оптимальных режимов эксплуатации;
    • разработка и внедрение технологии получения топлива для дизельных установок из метанола и рапсового технического масла;
    • разработка, организация производства и внедрение энергосберегающего оборудования, приборов, материалов;
    • децентрализация систем энергообеспечения потребителей теплом, топливом, сжатым воздухом с малыми нагрузками и резкопеременными режимами работы;
    • максимальное снижение энергозатрат в жилищно-коммунальном хозяйстве путем внедрения регулируемых систем отопления, вентиляции, горячего водоснабжения, освещения и утилизации тепла вентвыбросов, сточных вод, использования энергоэффективных строительных материалов, конструкций, гелиоподогревателей.
  • 905. Упругие волны
    Другое Физика

    На рис. 1.1 показано движение частиц при распространении в среде поперечной волны. Номерами 1, 2 и т. д. обозначены частицы, отстоящие друг от друга на расстояние, равное ¼ ?T, т. е. на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент времени, принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения; одновременно начинает смещаться из положения равновесия частица 2. По прошествии еще четверти периода первая частица будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положения, а третья частица начнет смещаться вверх из положения равновесия. В момент времени, равный Т, первая частица закончит полный цикл колебания и будет находиться в таком же состоянии движения, как и в начальный момент. Волна к моменту времени Т, пройдя путь ?T, достигнет частицы 5.

  • 906. Упругий и неупругий удар двух однородных шаров
    Другое Физика

    Абсолютно неупругим называют такой удар, после которого скорости обоих соударяющихся тел оказываются одинаковыми. Чтобы это стало возможным, соударяющиеся тела должны обладать такими свойствами, что силы, возникающие при их деформации, зависят не от величины деформации, а от скорости изменения деформации. Такие свойства присущи, например, мягкой глине, пластилину. При неупругом соударении происходит следующее. В начальный момент удара скорость деформации велика (шары сжимаются), поэтому возникают значительные силы, сообщающие обоим шарам ускорения, направленные в противоположные стороны. По мере развития удара скорости деформации шаров уменьшаются, а сами деформации увеличиваются до тех пор, пока скорости шаров не окажутся равными. В этот момент деформации шаров перестанут изменяться, исчезнут силы, и оба шара будут двигаться с одинаковой скоростью. При абсолютно неупругом ударе выполняются законы сохранения импульса и полной энергии. Механическая же энергия тел до удара больше механической энергии после удара, так как она частично (или полностью) переходит во внутреннюю энергию тел и расходуется на работу по деформации тел. Для определения скорости тел после взаимодействия рассмотрим удар двух шаров (материальных точек), образующих замкнутую систему. Массы шаров m1 и m2, скорости до удара V1i и V2i. Согласно закону сохранения суммарный импульс шаров до удара должен быть таким же, как после удара:

  • 907. Уравнения Больцмана, Лиувилля, Боголюбова
    Другое Физика

    Заметим, наконец, что в определение n-частичных функций Fn(x1, ..., хN, t), так же как и в определение FiN) (х1, ..., xN, t), вероятностный смысл был нами вложен «насильственно», и мы по существу получили систему уравнений (7), полностью эквивалентную уравнению Лиувилля, совершенно не связывая функции Fn с вероятностными характеристиками единичной системы. Отсюда следует, что система уравнений (7) есть система механических, а не статистических уравнений. Неудивительно поэтому, что эта система, так же как и уравнение Лиувилля, инвариантна по отношению к отражению времени замене и не может описывать необратимые макроскопические процессы. Необратимость вносится в формализм теории только определенными гипотезами сугубо вероятностного характера. Запишем в явном виде уравнения для F1 и F2, которыми нам придется заниматься более детально; при этом мы отбросим в множителе (N n)/V, входящем в (7) слагаемое n=1, 2:

  • 908. Уравнения Максвелла. Граничные условия
    Другое Физика

    Система уравнений, состоящая из уравнений Максвелла для электромагнитного поля и уравнений Ньютона для частиц, представляет собой единую систему уравнений, описывающую все явления, обусловленные электромагнитным взаимодействием (без учёта релятивистских и квантовых эффектов). Поэтому, строго говоря, их необходимо решать совместно в задачах электродинамики. Однако в такой наиболее общей постановке решать задачи о взаимодействии электромагнитного поля с веществом чрезвычайно трудно. Сложность проблемы заключается в том, что вещество состоит из громадного количества частиц, движение которых каждой в отдельности невозможно описать. С такой проблемой сталкиваются в классической механике при попытках описать механическое движение газов, жидкостей и твёрдых тел. Чтобы обойти эту трудность физикам приходилось строить определённые модели механических систем: модель абсолютно твёрдого тела, модель сплошной среды и др. При изучении взаимодействия заряженных частиц с электромагнитным полем также приходится вводить некоторые модели. Одной из таких широко употребляемых, является модель сплошной среды, состоящая из электрических диполей (диэлектрик). Эта модель электрического диполя играет очень важную роль в физике, так как атомы и молекулы представляют собой системы заряженных частиц, которые в целом нейтральны, но могут обладать отличным от нуля дипольным моментом и поэтому создавать электрическое поле.

  • 909. Уран (элемент)
    Другое Физика

    «Волнистая» урановая структура делает слиток непрочным. Атомы отдельных слоев связаны между собой довольно надежно, зато связь между слоями заметно слабее; поэтому при комнатной температуре уран очень хрупок. Упрочить металл можно, сохранив высокотемпературную кубическую решетку. Такую решетку имеет сплав урана с молибденом. Именно поэтому молибден стал главным легирующим элементом в производстве металлического урана. Молибден придает урану и другое полезное качество. Как правило, в мощных реакторах на тепловых нейтронах (а именно такие реакторы распространены в наше время) топливные элементы охлаждают водой. При малейшем нарушении защитной оболочки блок из чистого урана под угрозой: уран разлагает воду, свободный водород вступает в реакцию образуется гидрид урана H3U. Этот порошок осыпается и уносится водяным потоком твэл разрушается. Картина совсем иная, если вместо чистого урана применен ураномолибденовый сплав. Такие сплавы устойчивы к действию воды и служат великолепным материалом для главных урановых изделий твэлов атомных реакторов.

  • 910. Ускорители заряженных частиц
    Другое Физика

    Протонный циклотрон. Существует весьма элегантный и экономичный способ ускорения пучка путем многократного сообщения ему небольших порций энергии. Для этого с помощью сильного магнитного поля пучок заставляют двигаться по круговой орбите и много раз проходить один и тот же ускоряющей промежуток. Впервые этот способ был реализован в 1930 Э.Лоуренсом и С.Ливингстоном в изобретенном ими циклотроне. Как и в линейном ускорителе с дрейфовыми трубками, пучок экранируется от действия электрического поля в тот полупериод, когда оно действует замедляюще. Заряженная частица с массой m и зарядом q, движущаяся со скоростью v в магнитном поле H, направленном перпендикулярно ее скорости, описывает в этом поле окружность радиусом R = mv/qH. Поскольку ускорение приводит к увеличению скорости v, возрастает и радиус R. Таким образом, протоны и тяжелые ионы движутся по раскручивающейся спирали все возрастающего радиуса. При каждом обороте по орбите пучок проходит через зазор между дуантами высоковольтными полыми D-образными электродами, где на него действует высокочастотное электрическое поле. Лоуренс сообразил, что время между прохождениями пучка через зазор в случае нерелятивистских частиц остается постоянным, поскольку возрастание их скорости компенсируется увеличением радиуса. На протяжении той части периода обращения, когда высокочастотное поле имеет неподходящую фазу, пучок находится вне зазора. Частота обращения дается выражением

  • 911. Успехи и недостатки теории Бора
    Другое Физика

    1 См.: Бор Н. Избр. науч. тр.: В 2-х т. Т. 1. М., 1970. С. 90.
    2 Бор Н. Избр. науч. тр.: В 2-х т. Т. II. М., 1971. С. 397.
    3 Там же, С. 283.
    4 Там же. С. 102.
    5 Бор Н. Избр. науч. тр.: В 2-х т. Т. 1. С. 482.
    6 Бор Н. Избр. науч. тр.: В 2-х т. Т. II. С. 282.
    7 Там же. С. 392-393.
    8 Там же. С. 74.
    9 Там же. С. 406.
    10 См.: Петров А. 3. Методологические проблемы теории измерений. Киев, 1966. С. 66.
    11 См.: Алексеев И. С. Концепция дополнительности. М.. 1972. С. 3637.
    12 Бор Н. Избр. науч. тр.: В 2-х т. Т. II. С. 432.
    13 См.: Хютт В. П. // Принцип дополнительности и материалистическая диалектика. М., 1976. С. 149.
    14 См.: Мещеряков В. Т. Соответствие как отношение и принцип. Л., 1975. С. 23. 15
    15 Там же. С. 26.
    16 Там же. С. 27.
    17 См.: Алексеев И. С. Концепция дополнительности. С. 64.
    18 См.: Баженов Л. Б. // Принцип дополнительности и материалистическая диалектика. С. 15.
    19 Бор Н. Избр. науч. тр.: В 2-х т. Т. II. С. 60.
    20 Там же. С. 384.
    21 Там же. С. 61.
    22 Там же. С. 58.
    23 Там же. С. II 7.
    24 там же. С. 118.
    25 Там же. С. 211.
    26 Там же. С. 287.
    27 Там же.
    28 Там же.
    29 Там же.
    30 Там же.
    31 Там же. С. 288.
    32 Там же. С. 495.
    33 Там же. С. 532.
    34 См.: Остапенко С. В. // Принцип дополнительности и материалистическая диалектика. С. 37.
    35 См.: Методологические принципы физики. М., 1975. С. 443. 36. См.: Бунге М. Философия физики. М., 1975. С. 169.
    37 См.: Поликаров А. // Списание на БАН. 1976. № 6. С. 12.
    38 Эйнштейн А. Собр. науч. тр.: В 4-х т. Т. IV. М„ 1976. С. 296.
    39 Бор Н. Избр. науч. тр.: В 2-х т. Т. II. С. 406.
    40 См.: Алексеев И. С. Концепция дополнительности. С. 127.
    41 Гейзенберг В. Философия и физика: Часть и целое. М., 1989. С. 130.
    42 См.: Борн М. Моя жизнь и взгляды. М., 1973. С. 73.
    43 См.: Бори М. Физика в жизни моего поколения. М., 1963. С. 463.
    44 Паули В. Физические очерки. М., 1975. С. 57.
    45 См.: Фок В. А. // Физическая наука и философия. М., 1973.
    46 Там же. С. 73.
    47 См.: Ломсадзе Ю. М. // Материалистическая диалектика и концепция дополнительности. Киев, 1975.
    48 См.: Блохинцев Д. И. Принципиальные вопросы квантовой механики. Дубна, 1965.
    49 См.: Пахомов В. Я. // Физическая наука и философия.
    50 См.: Дышлевый П. С. Материалистическая диалектика и физический релятивизм. Киев, 1972.
    51 См.: Ахундов М. Д., Абдуллаев Р. Р. // Принцип дополнительности и материалистическая диалектика. С. 73.
    52 Там же.
    53 Бор Н. Избр. науч. тр.: В 2-х т. Т. II. С. 69.
    54 Там же. С. 408.
    55 Там же. С. 190.

  • 912. Установка для определения релаксационных характеристик низкомодульных полимерных материалов
    Другое Физика

    Практически с самого момента появления лазеров они оказались в центре внимания аналитиков как источник высокоэнергетического излучения, при взаимодействии которого с веществом возможно локальное испарение пробы и образование светящейся плазмы. Лазерное излучение можно сфокусировать в любой точке жидкой, газообразной или твердой пробы. В последнем случае это позволяет проводить не только интегральный анализ, но и получать информацию о пространственном распределении химических элементов в пробе. Однако, несмотря на широко ведущиеся разработки лазерных методов анализа, существует значительный разрыв между потребностями в таких методах и существующими реализациями для повседневной практики. Одним из факторов, существенно сдерживающих широкое применение метода, является труднодоступность, а часто и просто отсутствие, твердых образцов сравнения. Состав пара и ионной компоненты плазмы может существенно отличаться от элементного состава образца из-за неодинаковой степени поступления их с поверхности. Эти различия могут возникать на стадиях плавления, кипения, образования капель, диффузии в жидкой фазе и т.д. Использование сдвоенных лазерных импульсов излучения для анализа свежих растительных и биологических объектов приводит к дополнительным возможностям прикладного использования энергии лазерного излучения. Одной из таких потенциальных возможностей является возможность минерализации пробы первым импульсом, а затем вторым импульсом проведение непосредственно атомно-эмиссионного спектрального анализа. Изучение особенностей поступления химических элементов с поверхности и объема пористых тел может послужить основой для разработки образцов сравнения для анализа указанных объектов, так как большая часть биологических объектов представляют собой пористые тела. Многие вопросы, возникающие при создании оптимальных условий для проведения исследований процессов выхода элементов и одновременного экспресс-анализа удаляемых и остающихся элементов с поверхности могут быть эффективно решены при использовании лазерного многоканального атомно-эмиссионного спектрометра LSS-1 (производство СП «ЛОТИС ТИИ», Беларусь, г. Минск). Спектрометр включает в себя в качестве источника возбуждения плазмы двухимпульсный неодимовый лазер с регулируемыми энергией и интервалом между импульсами (модель LS2131 DM). Лазер обладает широкими возможностями как для регулировки энергии импульсов (до 80 мДж), так и временного сдвига между сдвоенными импульсами (0-100 мкс) излучения. Лазер может работать с частотой повторения импуль- сов до 10 Гц и максимальной энергией излучения каждого из сдвоенных импульсов до 80 мДж на длине волны 1064 нм. Длительность импульсов 15 нс. Временной сдвиг между сдвоенными импульсами может изменяться с шагом 1 мкс. Лазерное излучение фокусировалось на образец с помощью ахроматического конденсора с фокусным расстоянием 100 мм. Размер пятна фокусировки примерно 50 мкм. Все эксперименты проводились в атмосфере воздуха при нормальном атмосферном давлении. Свечение плазмы собиралось с помощью аналогичного конденсора на передние поверхности двух кварцевых волокон диаметром 200 мкм и направлялось на входные щели двух спектрометров типа SDH-1. Регистрация спектра проводилась с помощью ПЗС- линеек TCD 1304 AP (3648 пикселей). Запуск системы регистрация спектра осуществлялась синхронно с приходом второго импульса. Как видно из приведенных возможностей спектрометра управлять параметрами плазмохимического процесса и эрозией поверхности пористых тел можно, изменяя как плотность падающей энергии лазерного излучения, так и время задержки прихода второго сдвоенного лазерного импульса. В качестве модельных систем нами выбраны беззольные фильтры, как наиболее близко подходящие по своей структуре и поглощательной способности для водных растворов солей различных элементов. При проведении экспериментов фильтр наклеивался на поверхность держателя образцов, а затем на поверхность фильтра наносились растворы солей исследуемых элементов. Установлено, что процессы взаимодействия излучения с поверхностью образцов существенно зависят от метода изменения падающей плотности мощности одиночного импульса. Так при изменении плотности мощности падающего излучения (=1,064 нм, длительность одиночного импульса 15 нс) изменением энергии накачки (энергия накачки 10-15 Дж, энергия излучения 20-80 мДж) скорость испарения легкоплавких элементов натрия и лития постепенно возрастает, а затем падает. При изменении пятна фокусировки (изменение плотности мощности) наблюдается определенная периодичность, зависящая от энергии падающего излучения и расстояния за точкой точной фокусировки. При использовании режима сдвоенных лазерных импульсов (временная задержка между импульсами от 0 до 100 мкс) результирующая картина плазмообразования и формирования поверхности еще более усложняется. Полученные результаты можно объяснить на качественном уровне следующим образом. Вблизи поверхности образцов, содержащих в качестве компонентов легкоплавкие металлы Na, Li, имеющие относительно низкие температуры кипения пробой эрозионного факела металлических атомарных паров происходит при небольшом превышении интенсивности лазерного излучения значением, необходимым для образования факела. В первом эксперименте при изменении пятна площади фокусировки количество микродефектов изменяется. При начальном пятне размером примерно 50 мкм количество таких микродефектов невелико. При увеличении пятна фокусировки в область облучения попадает все увеличивающее число микродефектов и порог пробоя воздуха у поверхности образца значительно понижается. При использовании режима сдвоенных импульсов на первичные процессы плазмообразования будут накладываться процессы нагрева и испарения аэрозолей, образовавшихся при первом импульсе, вторым импульсом излучения. Общая черта всех моделей, описывающих пробой в аэродисперсных средах это нагрев и испарение аэрозольных частиц. Большинство из них рассматривают аэрозольные частицы как фактор, облегчающий пробой за счет развития электронной лавины в продуктах разрушения частиц.Дополнительными, а может быть и основными в нашем случае, механизмами повышения концентрации Na в плазме и соответственно уменьшением в поверхности могут быть ударные и тепловые волны, связанные с формированием пробоя в атмосфере, которые будут воздействовать на поверхность образца в некотором месте, что приводит к дополнительному нагреванию точки поверхности при сжатии. Даже при небольшом увеличении температуры (на 50-100 0С) натрий и литий легко испаряются с поверхности с несколько большей глубины, чем при воздействии только света. Подтверждением этого механизма увеличения количества атомов натрия и лития в плазме может служить тот факт, что если после действия мощного сдвоенного импульса излучения зарегистрировать спектр плазмы с облученного места, то интенсивность линий натрия и лития значительно уменьшается (от начальной концентрации 10-4 % до 10-7 %).Исследование процессов эрозии и модификации поверхности пористых тел показало, что обеднение поверхности натрием и литием весьма существенно. Природа подобных процессов связана как с отличием физических свойств элементов, входящих в сложный по микроструктуре и составу образец, так взаимным воздействием сдвоенных лазерных импульсов на поверхность

  • 913. Устойчивость и изменчивость. Законы развития в сложных системах. Деградация
    Другое Физика

    Суммируем вышеизложенное. В процессе своего развития система проходит две стадии: эволюционную (иначе называемую адаптационной и революционную (скачок, катастрофа. Во время развертывания эволюционного процесса происходит медленное накопление количественных и качественных изменений параметров системы и ее компонентов, в соответствии с которыми в точке бифуркации система выберет один из возможных для нее аттракторов. В результате этого произойдет качественный скачок и система сформирует новую диссипативную структуру, соответствующую выбранному аттрактору, что происходит в процессе адаптации к изменившимся условиям внешней среды. Эволюционный этап развития характеризуется наличием механизмов, которые подавляют сильные флуктуации системы, ее компонентов или среды и возвращают ее в устойчивое состояние, свойственное ей на этом этапе. Постепенно в системе возрастает энтропия, поскольку из-за накопившихся в системе, а также в ее компонентах и внешней среде изменений способность системы к адаптации падает и нарастает неустойчивость. Возникает острое противоречие между старым и новым в системе, а при достижении параметрами системы и среды бифуркационных значений неустойчивость становится максимальной и даже малые флуктуации приводят систему к катастрофе - скачку. На этой фазе развитие приобретает непредсказуемый характер, поскольку оно вызывается не только внутренними флуктуациями, силу и направленность которых можно прогнозировать, проанализировав историю развития и современное состояние системы, но и внешними, что крайне усложняет, а то и делает невозможным прогноз. Иногда вывод о будущем состоянии и поведении системы можно сделать, исходя из "закона маятника" - скачок может способствовать выбору аттрактора, "противоположного" прошлому. После формирования новой диссипативной структуры система снова вступает на путь плавных изменений, и цикл повторяется.

  • 914. Устойчивость плазмы в магнитных ловушках
    Другое Физика

    Настоящая работа касается устойчивости плазмы в магнитных ловушках, в которых характерный размер изменения удерживающего магнитного поля сравним с "поперечным" размером плазмы. Интерес к таким ловушкам связан с тем, что в них возможна МГД-устойчивость в отсутствие магнитной ямы. К этому классу относится, в частности, ряд осесимметричных конфигураций, образованных полоидальным магнитным полем, как с замкнутыми силовыми линиями (конфигурации с обращенным полем (FRC), см. [1]; ловушки типа [2, 3] с внутренними проводниками, их разнообразные версии описаны в [4,5]), так и открытых (полукасп [6]; ловушка с дивертором [7, 8]; непараксиальный пробкотрон, устойчивый против "первой" моды [9]). В МГД-модели с изотропным давлением, в которой стабилизация сильно неоднородным полем проявляется как влияние сжимаемости плазмы, условие конвективной (желобковой) устойчивости имеет вид [16,17]

  • 915. Устройства противоаварийной автоматики
    Другое Физика

    В первом комплекте АРС ОЛ установлены два устройства ФАМ-1 и ФАМ-3 типа ШП 2701. ФАМ-1 суммирует мощность блоков 1 ÷ 3, ФАМ-3 суммирует мощность блоков 1 ÷ 4. По цепям напряжения оба эти устройства ФАМ могут быть подключены к ТН I или II СШ через переключатели SN1, SN2 расположенные на панели 215Р РЩ ОРУ-330. Перед выводом из работы ТН I либо II СШ 330 кВ либо самих систем шин с помощью этого переключателя ФАМ 1, ФАМ 3 должны переводится на оставшийся в работе ТН. После ввода в работу ТН С.Ш., переключатель должен быть возвращен в исходное (заданное картой ППУ) положение. Контроль текущего значения мощности в устройствах ШП 2701 не предусмотрен, о состоянии ФАМ-1, 3 в части фиксируемой мощности можно судить только по свечению светодиодов сработавших ступеней на модулях устройства. Во втором комплекте АРС ОЛ установлено одно микропроцессорное устройство, изготовленное НПО "ХАРТРОН-ИНКОР" на базе программного модуля "Диамант". Данное устройство объединяет в себе функции двух ФАМ. ФАМ-2 суммирует мощность блоков 1 ÷ 3, ФАМ-4 суммирует мощность блоков 1 ÷ 4. По цепям напряжения оба эти устройства подключены непосредственно к шинкам ТН I СШ и ТН II СШ 330 кВ и ТН 750 кВ помимо переключателя. При этом энергоблоки 1 ÷ 3 программно закреплены за ТН I СШ 330 кВ, а блок №4 за ТН 750 кВ. При исчезновении напряжения одной из систем шин (ТН 750 кВ), обсчет мощностей производится относительно напряжения оставшейся системы шин. Переключение производится автоматически. При восстановлении питания фиксация присоединений за системами шин автоматически восстанавливается. Устройства ФАМ действуют контактами своих выходных реле на катушки промежуточных реле повторителей ФАМ (KL). Повторители же своими контактами действуют непосредственно в схемы логики АРС ОЛ. Соответственно имеются две независимых схемы реле повторителей ФАМ 1 и ФАМ 3 в 1-ом комплекте АРС ОЛ и две схемы повторителей ФАМ 2, и ФАМ 4 во 2-ом комплекте АРС ОЛ. При этом схемы повторителей ФАМ 1 управляются как контактами ФАМ 1 так и контактами ФАМ 2, а схема повторителей ФАМ 2 управляется как контактами ФАМ 2 так и контактами ФАМ 1 (см. схему на рисунке 3.).

  • 916. Устройство глаза человека (Доклад) (WinWord 98)
    Другое Физика

    Глаз расположен в глазнице черепа. Из глазного яблока выходит глазной нерв соединяющий его с головным мозгом. Глазное яблоко состоит из внутреннего ядра и окружающих его трех оболочек наружной, средней и внутренней. Наружная оболочка белочная оболочка, представляет собой жесткую непрозрачную капсулу, переходящую спереди в прозрачную роговицу, через которую в глаз проникает свет. Под ней находится сосудистая оболочка, которая переходит спереди в радужную оболочку, в центре которой имеется отверстие зрачок, который способен сужаться и расширяться под влиянием мышц. В сосудистой оболочке находится ресничная мышца, которая регулирует кривизну хрусталика. Во внутренней оболочке глаза сетчатке находятся светочувствительные рецепторы палочки и колбочки. В них энергия света превращается в процесс возбуждения, который передается по зрительному нерву в мозг. Колбочки сосредоточены в центре сетчатки, напротив зрачка в желтом теле и обеспечивают дневное зрение, воспринимая цвета, форму и детали предметов. На периферии сетчатки имеются только палочки, которые раздражаются слабым сумеречным светом, но они не чувствительны к цвету.

  • 917. Устройство и выбор асинхронного электродвигателя
    Другое Физика

    Перед установкой электрических машин и аппаратов необходимо проверить прочность фундаментов и конструкций, на которые они будут установлены. Работы по установке на низкие фундаменты небольших машин или аппаратов весом до 50 кг могут выполняться вручную, но не меньше, чем двумя рабочими. После поднятия и установке машин и аппаратов их необходимо сразу же закрепить на фундаменте или конструкции. Оставлять машины и аппараты незакрепленными запрещается. При затягивании анкерных винтов разрешается пользоваться гаечным ключом с доточенной рукояткой, длина которой должна превышать нормальную длину не больше, чем в 3-4 разы. При соединении полумуфт или других деталей запрещается их совмещать пальцами рук. Для этого нужно применять ломики, бородки или отрезки круглой стали. Перед пробным пуском машин необходимо проверить крепление фундаментных винтов и других элементов оборудования, отсутствие инородных тел внутри оборудования, наличие заземления, наличие изгородей подвижных частей. К началу прокручивания электропривода необходимо вывести всех работающих и вывесить соответствующие предупредительные плакаты на включающих устройствах. Если во время испытания оказалось, что необходимо устранить какие-то дефекты и неполадки, электродвигатель должен быть отключен, а на включающих аппаратах надо вывесить плакат «Не включать - работают люди». Рабочее место должно быть ограждено и достаточно освещенное, а в местах, где есть опасность попадания под напряжение, должны висеть плакаты "Стой, опасно для жизни", "Под напряжением, не затрагивать", "Работать здесь" и т.д. На рабочее место категорически запрещается допускать посторонних лиц. При допуске к работе в действующих электротехнических устройствах до и выше 1000 В и работе на высоте каждый монтажник проходит медицинский осмотр и проверку знаний правил техники безопасности и технической эксплуатации электроустановок в соответствующей комиссии, о чем ему выдается удостоверение с определенной группой допуска. Он должен не только знать, но и практически усвоить методы предоставления первой помощи при несчастных случаях, связанных с поражением электрическим током.

  • 918. Устройство и применение лазера
    Другое Физика

    С момента своего изобретения лазеры зарекомендовали себя как «готовые решения ещё не известных проблем». В силу уникальных свойств излучения лазеров, они широко применяются во многих отраслях науки и техники, а также в быту (проигрыватели компакт-дисков, лазерные принтеры, считыватели штрих-кодов, лазерные указки и пр.). В промышленности лазеры используются для резки, сварки и пайки деталей из различных материалов. Высокая температура излучения позволяет сваривать материалы, которые невозможно сварить обычными способами (к примеру, керамику и металл). Луч лазера может быть сфокусирован в точку диаметром порядка микрона, что позволяет использовать его в микроэлектронике (так называемое лазерное скрайбирование). Лазеры используются для получения поверхностных покрытий материалов (лазерное легирование, лазерная наплавка, вакуумно-лазерное напыление) с целью повышения их износостойкости. Широкое применение получила также лазерная маркировка промышленных образцов и гравировка изделий из различных материалов. При лазерной обработке материалов на них не оказывается механическое воздействие, поэтому возникают лишь незначительные деформации. Кроме того весь технологический процесс может быть полностью автоматизирован. Лазерная обработка потому характеризуется высокой точностью и производительностью.

  • 919. Устройство и принцип действия разрядников
    Другое Физика

    При работе электрических установок возникают напряжения, которые могут значительно превышать номинальные значения (перенапряжения). Эти перенапряжения могут пробить электрическую изоляцию элементов оборудования и вывести установку из строя. Чтобы избежать пробоя электрической изоляции, она должна выдерживать эти перенапряжения, однако габаритные размеры оборудования получаются чрезмерно большими, так как перенапряжения могут быть в 6-8 раз больше номинального напряжения. С целью облегчения изоляции возникающие перенапряжения ограничивают с помощью разрядников и изоляцию оборудования выбирают по этому ограниченному значению перенапряжений. Возникающие перенапряжения делят на две группы: внутренние (коммутационные) и атмосферные. Первые возникают при коммутации электрических цепей (катушек индуктивностей, конденсаторов, длинных линий), дуговых замыканиях на землю и других процессах. Они характеризуются относительно низкой частотой воздействующего напряжения (до 1000 Гц) и длительностью воздействия до 1 с. Вторые возникают при воздействии атмосферного электричества, имеют импульсный характер воздействующих напряжений и малую длительность (десятки микросекунд). Электрическая прочность изоляции при импульсах зависит от формы импульса, его амплитуды. Зависимость максимального напряжения импульса от времени разряда называется вольт-секундной характеристикой. Для изоляции с неоднородным электрическим полем характерна резко падающая вольт-секундная характеристика. При равномерном поле вольт-секундная характеристика пологая и идет почти параллельно оси времени.

  • 920. Устройство и принцип работы радиоприёмника Попова
    Другое Физика

    Первый радиоприёмник имел очень простое устройство: батарея, электрический звонок, электромагнитное реле и когерер (от латинского слова cogerentia сцепление). Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки. Действие прибора основано на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, которые спекают опилки. В результате сопротивление когерера резко падает (в опытах А.С. Попова со 100000 до 1000 - 500 Ом, то есть в 100-200 раз). Снова вернуть прибору большое сопротивление можно, если встряхнуть его. Чтобы обеспечить автоматичность приема, необходимо для осуществления беспроволочной связи, А.С. Попов использовал звонковое устройство для встряхивания когерера после приема сигнала. Под действием радиоволн, принятых антенной, металлические опилки в когерере сцеплялись, и он начинал пропускать электрический ток от батареи. Срабатывало реле, включая звонок, а когерер получал “легкую встряску”, сцепление между металлическими опилками в когерере ослабевало, и к ним поступал следующий сигнал.