Информация по предмету Физика

  • 801. Состав и основные характеристики различных видов топлива. Условное топливо
    Другое Физика

    Древесный уголь - твёрдый, пористый, высокоуглеродистый продукт ( 84% углерода), образующийся при нагревании древесины без доступа (или при незначительном доступе) воздуха в печах и ретортах (иногда даже в кострах). В зависимости от вида древесины из 1м³ получают 140-180 кг угля, 280-400 кг жидких продуктов и около 80 кг горючих газов. Теплота сгорания 31 МДж/кг (7000-8100 ккал/кг). Плотность берёзового угля 380 кг/м³, менее плотные угли дают сосна (300 кг/м³) и ель (260 кг/м³). Большая пористость древесного угля обуславливает его высокие адсорбционные свойства. Древесный уголь обладает способностью при обычной температуре соединяться с кислородом воздуха; этим объясняются случаи его самовозгорания. При выгрузке из печей и реторт его влажность составляет 2-4%, при хранении она повышается до 7-15%. Зольность угля должна быть не более 3%, содержание летучих веществ - не более 20%. Особенность древесного угля - низкое содержание таких примесей, как фосфор и сера, что делает его необходимым для некоторых металлургических процессов.

  • 802. Состояние и перспективы использования энергетических углей
    Другое Физика

    ЭлементМарка угляДДГГТСССТАРедкоземельные элементы (РЗЭ)La308,1103,2133113,5188,3153,798,7Ce737,2145,1204136339,2172,4108Sm181526,220,422.117,314,7Eu55.86,83,58,45.22.9Tb3,22,39,85,324,43,73,2Yb15,314,416,3918,512,312,5Lu3,723,32.811,63,82,3Сумма РЗЭ1090,4286,7399,2290,5612,5368,4242,3Радиоактивные элементы Th25,526,635,118,334,631,129,3U69,418,732,433,230,117,9Другие элементыLi239,2126,6139113.6166.2140,1133,2Be24,914,614,718,627,1914,410B864427,4343,2265,2238,8141,676,2F949,4806,1441,2285,7Na1692034862233813375263841407812000Mg3023414551352651471632617273293017Al10917412679911026712558298575134256136531Si171652224587231406242121205534229362288446P312327152292390123884768514S251429268243431249616414321802406Cl4225143534662097K29977203862543617359Ca71315325716683271587742746877814289Sc43,932,440,529,438,530,921,8Ti1670099041413012626127671269616000V301,6162,8185,2157,8163,3134,295,2Cr240,2153,9290,4143,3205,8162,9129,7Mn1086169622471515270417702476Fe59405515369097843276671489493933929Co74,154,753,856,677,446,428,2Ni100,854,738,298,5120,6100,536,2Cu107,748,819,8101114,290,657,1Zn454,397,7157,2265,2347,7186,6171,4Ga57,428,52,945,451,540,624,3Эле-ментМарка угляДДГГТСССТАGe21,419,87,611,58,8As248,5473,2157,2843,9431,2Se2,96,54,9Rb227,7300,7416,6299,2228,8274,5126,6Sr4765328627262462239424431286Y238,1160,3175,9136,4186,6137,885,7Zr2905185921293157210925831294Nb126,889,597,660,6137,787,647,6Mo13,89,19,66,111,48.26,4Ag1,30,021,35,54,4Cd8,821,8Sn18,611,912,410,715,312,611,4Sb31,78,39,6Cs18,227,230,91423,917,411,7Ba8288545468005024769757746105Hf18,722,325,517,836,527,510,6Ta6,675,9519,67,71,6W6,9Au1,20,2717,50,240,650,45Hg0,60,410,08121,50,06Tl133,3Pb72,530,467,9132,673,872,557,1Bi14,317,410,810,7109,37,6Итого560613,8521840,69637432,5544137,42584718,74653489,35520017,86

    1. СТРУКТУРА И СТРОЕНИЕ УГЛЕЙ
  • 803. Состояние проблемы энергообеспечения обособленных потребителей в Российской Федерации
    Другое Физика

     

    1. Под ред. Мягких Д. и др. Развитие возобновляемых источников энергии в России: возможности и практика (на примере Камчатской области). Сборник. - М.: ОМННО "Совет Гринпис", 2006 г. - 92 с.
    2. Иванова И.Ю., Попов С.П., Тугузова Т.Ф., Симоненко А.Н. Роль возобновляемых энергоисточников в развитии малой энергетики / Сборник трудов международной научно-практической конференции "Малая энергетика - 2005".11-14 октября 2005 г., г. Москва.2-е. изд. испр. и доп. - М.: ОАО "Малая энергетика", 2005 г. - 388 с.
    3. Иванова И.Ю., Тугузова Т.Ф., Попов СП. Развитие малой энергетики на северо-востоке России: проблемы, эффективность, приоритеты / Труды международной научно-практической конференции "Малая энергетика - 2006".21-24 ноября 2006 г., г. Москва. - М.: ОАО "Малая энергетика", 2006 г. - 370 с.
    4. Станев Б., Иванов И., Тугузова Т., Петров Н. Нетрадиционная энергетика в энергоснабжении изолированных потребителей районов Севера / Еженедельная газета "Наука в Сибири" №1-2 (2537-2538), 13 января 2006 г. - 16 с.
    5. Серебренников Ф.В. Ветроэлектрические установки малой мощности для изолированного потребителя (обоснование и подбор) / Роль природообустройства сельских территорий в обеспечении устойчивого развития АПК (МАТЕРИАЛЫ МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ), Часть II, М.: МГУП, 2007 г. - 379 с.
    6. http://www.expert.ru/printissues/expert/2008/24/cena_rastochitelnosti/
  • 804. Спектральные характеристики
    Другое Физика

    В этой части работы я подробнее остановлюсь на не менее важной характеристике спектров резольвенте, и расскажу о связи этой характеристики с подвидами спектра оператора с остаточным, точечным и непрерывными его частями. Вначале, опять же, необходимо остановиться на некоторых основных определениях и понятиях теории линейных операторов. Итак:

    1. Пусть A - оператор, действующий в конечномерном линейном пространстве E. Спектром оператора называется множество всех его собственных значений.
    2. Квадратную матрицу n×n можно рассматривать как линейный оператор в n-мерном пространстве, что позволяет перенести на матрицы «операторные» термины. В таком случае говорят о спектре матрицы.
    3. Пусть A - оператор, действующий в банаховом пространстве E над полем k. Число ? называется регулярным для оператора A, если оператор R(?) = (A ? ?I)-1, называемый резольвентой оператора A, определён на всём E и непрерывен.
    4. Множество регулярных значений оператора A называется резольвентным множеством этого оператора, а дополнение резольвентного множества - спектром этого оператора.
    5. Максимум модулей точек спектра оператора A называется спектральным радиусом этого оператора и обозначается через r(A). При этом выполняется равенство:
  • 805. Спектральные характеристики источников света
    Другое Физика

    В начале XIX в. было обнаружено, что выше (по длине волны) красной части спектра видимого света находится невидимый глазом инфракрасный участок спектра, а ниже фиолетовой части спектра видимого света находится невидимый ультрафиолетовый участок спектра. Длины волны инфракрасного излучения заключены в пределах от 3·10-4 до 7,6·10-7 м. Наиболее характерным свойством этого излучения является его тепловое действие. Источником инфракрасного излучения является любое тело. Интенсивность этого излучения тем выше, чем больше температура тела. Инфракрасное излучение исследуют с помощью термопар и болометров. На использование инфракрасного излучения основан принцип действия приборов ночного видения. Длины волн ультрафиолетового излучения заключены в пределах от 4·10-7 до 6·10-9 м. Наиболее характерным свойством этого излучения является его химическое и биологическое действие. Ультрафиолетовое излучение вызывает явление фотоэффекта, свечение ряда веществ (флуоресценцию и фосфоресценцию). Оно убивает болезнетворные микробы, вызывает появление загара и т.д. В науке инфракрасное и ультрафиолетовое излучения используются для исследования молекул и атомов вещества. На экране за преломляющей призмой монохроматические цвета в спектре располагаются в следующем порядке: красный (имеющий наибольшую среди волн видимого света длину волны lк=7,6·10-7 м и наименьший показатель преломления), оранжевый, желтый, зеленый, голубой, синий и фиолетовый (имеющий наименьшую в видимом спектре длину волны lф=4·10 -7 м и наибольший показатель преломления). Итак, спектральный анализ применяется почти во всех важнейших сферах человеческой деятельности. Таким образом, спектральный анализ является одним из важнейших аспектов развития не только научного прогресса, но и самого уровня жизни человека.

  • 806. Спектри і спектральний аналіз
    Другое Физика

    Повернемося тепер до розгляду ЕЕГ. Симетричність (збіг ЕЕГ, знятих з відведень, розташованих у протилежних точках скальпа) характерна для нормальної ЕЕГ, вона є одним з істотних критеріїв діагностики. Разом з тим, ЕЕГ є випадковим процесом, тому, говорячи про збіг, розумітимемо збіг у середньому, тобто збіг характеристик процесів. Як таку характеристику виберемо спектр потужності ЕЕГ, потім знайдемо суму і різницю ЕЕГ симетричних відведень, потім визначимо спектр сумарного процесу і спектр різниці процесів. Виходячи з лінійності перетворення Фур'є, прояв симетричності буде в тому, що спектр сумарного процесу має значно перевершувати спектр різниці процесів. За відсутності симетричності спектри сумарного і спектр різниці процесів практично перекриватимуться. Зазначені припущення виявляються практично, що ілюструється рис. 3 і рис. 4.

  • 807. Спектры и спектральный анализ в физике
    Другое Физика

    Именно с помощью спектрального анализа узнали химический состав Солнца и звезд. Другие методы анализа здесь вообще невозможны. Оказалось, что звезды состоят из тех же самых химических элементов, которые имеются и на Земле. Любопытно, что гелий первоначально открыли на Солнце и лишь затем нашли в атмосфере Земли. Название этого элемента напоминает об истории его открытия: слово гелий означает в переводе «солнечный».
    Благодаря сравнительной простоте и универсальности спектральный анализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии. С помощью спектрального анализа определяют химический состав руд и минералов.
    Состав сложных, главным образом органических, смесей анализируется по их молекулярным спектрам.
    Спектральный анализ можно производить не только по спектрам испускания, но и по спектрам поглощения. Именно линии поглощения в спектре Солнца и звезд позволяют исследовать химический состав этих небесных тел. Ярко светящаяся поверхность Солнца - фотосфера - дает непрерывный спектр. Солнечная атмосфера поглощает избирательно свет от фотосферы, что приводит к появлению линий поглощения на фоне непрерывного спектра фотосферы.
    Но и сама атмосфера Солнца излучает свет. Во время солнечных затмений, когда солнечный диск закрыт Луной, происходит обращение линий спектра. На месте линий поглощения в солнечном спектре вспыхивают линии излучения.
    В астрофизике под спектральным анализом понимают не только определение химического состава звезд, газовых облаков и т. д., но и нахождение по спектрам многих других физических характеристик этих объектов: температуры, давления, скорости движения, магнитной индукции.

  • 808. Специальная и общая теория относительности Эйнштейна
    Другое Физика

    Создатель теории относительности сформулировал обобщенный принцип относительности, который теперь распространяется и на электромагнитные явления, в том числе и на движение света. Этот принцип гласит, что никакими физическими опытами (механическими, электромагнитными и др.), производимыми внутри данной системы отсчета, нельзя установить различие между состояниями покоя и равномерного прямолинейного движения. Классическое сложение скоростей неприменимо для распространения электромагнитных волн, света. Для всех физических процессов скорость света обладает свойством бесконечной скорости. Для того чтобы сообщить телу скорость, равную скорости света, требуется бесконечное количество энергии, и именно поэтому физически невозможно, чтобы какое-нибудь тело достигло этой скорости. Этот результат был подтвержден измерениями, которые проводились над электронами. Кинетическая энергия точечной массы растет быстрее, нежели квадрат ее скорости, и становится бесконечной для скорости, равной скорости света.

  • 809. Специфика ремонтного обслуживания АЭС
    Другое Физика

    Выбор метода дезактивации определяется характером загрязненности, конструкционными материалами оборудования, условиями эксплуатации, габаритными размерами, конфигурацией, а также доступностью дезактивируемых поверхностей. Наиболее часто применяются следующие виды дезактивации:

    1. химический отложения снимаются за счет химического воздействия при заполнении оборудования химическими растворами или погружением его в соответствующий дезактивирующий раствор. Эффективность зависит от состояния поверхностей оборудования и трубопроводов, от температуры дезактивирующих растворов, времени выдержки оборудования в контакте с раствором, а также от количества циклов дезактивации;
    2. электрохимический представляет собой анодное травление дезактивируемых поверхностей в электролите при пропускании через него постоянного электрического тока;
    3. пароэмульсионный очищаемая поверхность подвергается воздействию смеси дезактивирующего раствора и пара под давлением 0,8-1,2 МПа, подаваемой с помощью специального устройства. Эффективность метода очень высока;
    4. «сухой» применяется когда применение химических растворов и других мокрых способов недопустимо. Сущность в том, что чистые поверхности отдельных помещений заблаговременно до начала ремонтных работ обрабатываются с помощью распылителя специальными эмульсиями из поверхностно активных и коллоидных веществ;
    5. механический используется для дезактивации оборудования, облицовок бассейнов и других механических поверхностей. Для механической очистки используют специальные скребки машинки для зачистки, металлические щетки и т. д.
  • 810. Специфика физики микрообъектов
    Другое Физика

    Один из вариантов модели волны-пилота рассмотрен в книге Д. Бома: «Сначала постулируем, что с частицей (например, электроном) связано «тело», занимающее малую область пространства; в большинстве применений на ядерном уровне его можно рассматривать как материальную точку. В качестве следующего шага предположим, что с «телом» связана волна, без которой тело не обнаруживается. Эта волна представляет собой колебания некоего нового поля (?-поля), до некоторой степени похожего на гравитационное и электромагнитное, но имеющее свои собственные характерные черты. Далее предполагаем, что ?-поле и «тело» взаимодействуют. Это взаимодействие должно будет приводить к тому, что «тело» будет стремится находится в области, где интенсивность ?-поля имеет наибольшее значение. Осуществлению этой тенденции движения электрона мешают неупорядоченные движения, испытываемые телом, которые могли бы возникнуть, например, в следствие флуктуаций самого ?-поля. Флуктуации вызывают тенденцию блуждания «тела» по всему доступному ему пространству. Но осуществлению этой тенденции мешает наличие «квантовой силы» которая устремляет «тело» в области, где интенсивность ?-поля наиболее высока. В итоге получим какое-то распределение «тел», преобладающее в областях с наибольшей интенсивностью ?-поля.»

  • 811. Спирография: техника и обработка результатов измерения
    Другое Физика

    Индивидуальный норматив, рассчитанный с учетом влияния нескольких или всех указанных факторов, принято называть должной величиной. Для большинства спирографических показателей разработаны должные величины, для некоторых - определен диапазон индивидуальных различий здоровых людей. Для расчета должных величин многих функциональных показателей наиболее широко используются величины должного основного обмена. Должную величину в каждом конкретном случае принимают за 100%, а полученную экспериментально - выражают в процентах должной. Использование должных величин уменьшает, но не устраняет полностью индивидуальных различий здоровых людей, которые для большинства показателей находятся в пределах 80-120% должной, а для некоторых - в еще более широком диапазоне. Это создает значительные трудности в оценке спирографических показателей, особенно при диагностике начальных нарушений. Дело значительно меняется, если имеются данные повторных исследований. Даже небольшие отклонения от результатов предшествующего обследования больного могут указать на величину и направленность происшедших изменений. Правильно их оценка может быть дана только с учетом воспроизводимости показателя. Под воспроизводимостью понимают диапазон повторных измерений с принятой надежностью различает свойственную методу погрешность от фактически происшедших сдвигов. Суммарная погрешность спирографического исследования включает случайные и систематические ошибки, связанные с конструктивными особенностями прибора, субъективные ошибки снятия отсчетов по спирограмме и физиологически обусловленные колебания, свойственные исследуемым. Мерой воспроизводимости является среднее квадратичное отклонение разброса повторных измерений. Воспроизводимость биологических параметров принято оценивать в 95% доверительном интервале. важно также иметь ввиду, что если в процессе одного исследования в ряде повторных измерений оказывается величина, превышающая предел воспроизводимости, то она должна быть отброшена, как недостоверный результат.

  • 812. Сплавы магнитных переходных металлов
    Другое Физика

    В [177] впервые была использована реальная теоретическая плотность состояний [51, 178] для расчета параметра асферичности Для точного расчета необходимо было отдельно учесть eg- и t2g состояния. Получить такие раздельные плотности весьма сложно из-за сильной гибридизации этих состояний. В [177] использовано то обстоятельство, что в точках и на линиях высокой симметрии, где гибридизация отсутствует, волновые функции можно отождествить с eg- и t2g состояниями. Предполагалось, что количественно поведение волновых функций не сильно изменяется при переходе к другим точкам. Используемая теоретическая плотность состояний состоит из шести подзон, две из них связаны с s-электронами, а остальные четыре имеют в указанных точках и на линиях высокой симметрии поведение плотности состояний электронов в t2g и eg-состояниях. Поэтому можно предположить приближённое разделение плотности состояний на составляющие для t2g и eg- электронов.

  • 813. Способ устранения аберрации в электронных микроскопах
    Другое Физика

    В 1947 г. английский физик Дэннис Габор предложил интересный способ устранения аберрации в электронных микроскопах. Он предложил преобразовывать электронную волну в световую, устранять хорошо известную оптическую аберрацию, а потом снова преобразовывать эту волну в электронную и, уже очищенную от аберрации, использовать в дальнейшем. Однако чтобы «подлечить» световую волну следует её каким-то образом зафиксировать, и обычная фотография для этой цели не подойдёт. Когда мы смотрим на фотографический, снимок все предметы изображённые на нём кажутся нам плоскими. Что особенно выражено при косом рассматривании снимка. Дело в том, что фотография даёт нам информацию только об амплитуде световой волны, излучаемой предметом, но абсолютно ничего не говорит о её фазе. Другими словами плёнка фиксирует только интенсивность падающего на неё света, то есть те предметы, которые при съёмке были освещены сильнее, получились ярче и на фотографии. Однако уловить фазу, то есть определить насколько одна волна пришла позже другой, ни один прибор не в состоянии. Дело в том, что частота видимого света равна 4·1014 7,5·1014 Гц и поэтому фазу этой волны представляет довольно большие трудности. Однако всем известна картина интерференции света с чередующимися чёрными и белыми полосами. Причём, как известно, чёрные полосы это те области, где волны, прошедшие через щели, сошлись в противофазе, то есть со сдвигом фаз в 180о, а белые области там где волны попали в фазу, то есть со сдвигом фаз в 0о. Остальные участки серого цвета соответствуют промежуточным случаям, когда сдвиг фаз больше или меньше 180о.

  • 814. Статистическая физика и термодинамика
    Другое Физика
  • 815. Стекло: структура, свойства, применение
    Другое Физика

    Обычно понятие "стекло" определяется не просто как материал, а как некоторое особое состояние твердого тела, стеклообразное состояние, противопоставляемое кристаллическому. Известно, что одно и то же вещество может быть газообразным, жидким и кристаллическим. Для каждого такого состояния характерна своя группа специфических признаков. Стекло же не может быть полностью отнесено по совокупности признаков ни к одному из них. Рассмотрим вещества, находящиеся в указанных агрегатных состояниях, с точки зрения взаимного расположения частиц (атомов, ионов, молекул), образующих вещество, и их взаимодействия между собой. При очень высоких температурах многие неорганические вещества существуют в виде газа. В газе частицы вещества располагаются и движутся хаотически. При низком давлении, например атмосферном, взаимодействия между частицами чрезвычайно слабы. При понижении температуры газ конденсируется в жидкость, которая при дальнейшем снижении температуры кристаллизуется. В жидкостях и кристаллах частицы располагаются несравненно более компактно, между ними действуют значительные по величине силы, которые создают известную упорядоченность в расположении атомов или молекул: в кристаллах почти идеальную, в жидкостях - существенно менее полную. Основной особенностью кристаллов является то, что их можно получить путем повторения элементарной ячейки во всех трех направлениях. Элементарная ячейка состоит из некоторого числа атомов (ионов, молекул), строго определенным образом расположенных друг относительно друга. Такое повторение элементарной ячейки называют дальним порядком. В жидкостях нельзя выделить такой элементарной ячейки. Для жидкости можно с уверенностью говорить о существовании ближнего порядка, то есть о ближайших соседних частицах, окружающих центральную. Таким образом, для жидкости характерен ближний порядок, но нет дальнего. Мы воспользуемся здесь широко применяемым определением стекла: стекло - это такое состояние аморфного вещества, которое получается при затвердевании переохлажденной жидкости. Стекло неравновесно по отношению к кристаллическому состоянию, которое может реализовываться при том же составе и при тех же внешних условиях. Отличие стекла от кристаллов состоит в отсутствии периодичности строения, в отсутствии дальнего порядка в структуре.

  • 816. Стереометрия. Тема Движение
    Другое Физика

    Âàæíîé õàðàêòåðèñòèêîé äâèæåíèÿ ïðîñòðàíñòâà ÿâëÿåòñÿ ìíîæåñòâî åãî íåïîäâèæíûõ òî÷åê. Çäåñü ìîãóò ïðåäñòàâèòüñÿ ëèøü ñëåäóþùèå ïÿòü ñëó÷àåâ:

    1. Ó äâèæåíèÿ íåïîäâèæíûõ òî÷åê íåò (íåòîæäåñòâåííûé ïàðàëëåëüíûé ïåðåíîñ).
    2. Äâèæåíèå èìååò ëèøü îäíó íåïîäâèæíóþ òî÷êó (öåíòðàëüíàÿ ñèììåòðèÿ).
    3. Ìíîæåñòâî íåïîäâèæíûõ òî÷åê äâèæåíèÿ ïðîñòðàíñòâà ÿâëÿåòñÿ ïðÿìîé (ïîâîðîò âîêðóã ïðÿìîé).
    4. Ìíîæåñòâî íåïîäâèæíûõ òî÷åê äâèæåíèÿ ïðîñòðàíñòâà ÿâëÿåòñÿ ïëîñêîñòüþ (çåðêàëüíàÿ ñèììåòðèÿ).
    5. Ìíîæåñòâî íåïîäâèæíûõ òî÷åê äâèæåíèÿ ïðîñòðàíñòâà ÿâëÿåòñÿ âñåì ïðîñòðàíñòâîì (òîæäåñòâåííîå äâèæåíèå).
  • 817. Стохастичность и нелинейность систем. Неравновесность систем. Энтропия и негэнтропия
    Другое Физика

    Для обоснования необходимости расчётов ОЭ и ОНГ можно привести следующие доводы:

    1. Неопределённость и вероятностный характер являются внутренней формой существования всех систем и структур универсума. Они существуют как в микромире, так и в неорганическом и живом мире, также как и в человеческом обществе. Наше сознание также содержит элементы неопределённостей и способно их оценить и составлять вероятностные прогнозы событий. Поэтому игнорирование этих явлений не дало бы возможности создать достоверных моделей реального мира.
    2. Точные науки, физика, химия, биология и др., занимаются в основ ном вещественными и энергетическими системами, частично и статистико-вероятностными явлениями. Однако, их законы не отражают ОЭ и ОНГ систем и поэтому не могут освещать общие закономерности инфопередачи в природея.
    3. Вероятности событий в системах, в их элементах и в отдельных воз действиях на системы не обладают аддитивными свойствами. Их невозможно сочетать, комбинировать и проводить расчёты суммирования. Намного больше возможностей для вероятностного прогноза открываются, если перевести вероятности в ОЭ (логарифмирование) и, после расчётов балансов ОЭ и ОНГ, обратно в вероятностные характеристики.
    4. В ряде случаев могут возникать сомнения в точности расчётов ОЭ и ОНГ из-за недостаточности исходных данных. Это сильно уменьшает возможности применения метода. Инфомодели сами могут быть мало гомоморфными, приближёнными, неопределёнными. С другой стороны, осознание этой неопределённости заставляет находить пути увеличения точности и выяснения косвенных методов определения условных вероятностей. Человеческое сознание этим и занимается: косвенными методами прогнозирует вероятности событий в будущем. Однако, исследуемые системы стали такими сложными, что только интуицией уже трудно справиться. Необходимо для определения условных вероятностей привлекать современный математический аппарат и априорно существующую информацию. Часто достаточно уточнять данные путём проведения нескольких дополнительных опытов и при статистической обработке совместных данных. Почти для каждой системы имеется достаточно косвенных данных, особенно при использовании опыта аналогичных ситуаций. При их умелом использовании можно достаточно точно оценить большинство требуемых вероятностей.
    5. При большинстве задач управления для принятия практических решений не требуется большая точность результатов, важно выяснение всех опасных вариантов и их отсеивание. Достижение системой цели зависит от существенных, несущественных и от вообще отрицательных факторов. При некоторых условиях цель вообще не может быть достигнута (Р = О; Э R ?). Часто очень важно узнать и отсеять эти условия и это возможно путём расчёта ОЭ разных вариантов системы.
    6. ОЭ системы по существу является не скалярной величиной, а много мерной моделью в факторном пространстве. Модель целесообразно усовершенствовать постепенно, начиная от более простых, мысленных, но менее гомоморфных вариантов. В дальнейшем, в соответствии с требуемой точностью, можно модель приблизить оригиналу, уточняя её параметров. При этом сравнивают выходы, полученные на модели с результатами наблюдений реальной системы и уточняют модель.
    7. Такая гибкая система информационного моделирования позволяет обеспечить надёжное управление работой реальных сложных и стохастических систем. Обеспечивается оперативное управление даже в таких условиях, когда система изменяется быстро и решение приходится принимать немедленно, не имея достаточной информации. Может возникнуть вопрос, каким образом ОЭ принимается аддитивной, скалярной величиной, если состояние системы является многомерным и за висит от условно независимых координат (факторов, переменных). Действительно, состояние системы теоретически описывает вектор в пространстве состояния. Соответственно ОЭ описывает вектор в условно-энтропийном факторном пространстве. При исследовании любых систем необходимо во всех этапах учесть наличие многомерного пространства состояния. Однако, при исследовании сложных систем и их моделей, их размерность и пределы факторов чрезвычайно большие. Кроме того, в большинстве случаев неизвестны функциональные зависимости между влияющими факторами и целевыми критериями. В таких условиях векторный анализ чрезвычайно труден и приходится использовать эвристические методы. Они заключаются в том, что стараются выяснить в поисковом поле те области и размерности, где вероятность пребывания системы мала и исключить эти области и факторы от дальнейшего рассмотрения. Путём применения условных вероятностей и условных энтропий влияние факторов проектируются на ось в направлении вектора ОЭ.
  • 818. Стрела времени
    Другое Физика

    Можно выделить два пути социализации субстанциональных идей. Наиболее прямой из них операциональное предъявление, т.е. воспроизводимое измерение каких-либо характеристик субстанциональных потоков, отличных от основного их проявления течения нашего времени. На этом пути мы находимся, используя аналогию из истории открытия электричества, скорее в положении “лягушачьего танцмейстера” Гальвани, чем на месте обладателей дошедшей и до наших дней рамки Фарадея. Следует учесть также, что по принятому здесь определению субстанция, порождая взаимодействие частиц, тем не менее, не взаимодействует с ними. И, по-видимому, не следует сетовать на непроработанность субстанциональных гипотез: экспериментальное обнаружение объектов глубинных уровней строения материи зависит не только от интеллектуальных усилий теоретиков, но в огромной степени от достигнутой цивилизацией “суммы технологий” (по выражению С.Лема). Яркие примеры справедливости этого утверждения дистанция в тысячи лет между атомной гипотезой Демокрита и экспериментами по диффузии атомов и другими опытными подтверждениями атомного строения вещества или дистанция в добрую сотню лет между декларированными Менделем частицами наследственности и проведенным Уотсоном и Криком рентгено-структурным анализом строения дезоксирибонуклеиновой кислоты. Другой путь умозрительный (speculative) все-таки “измышлять гипотезы”: опираясь на введенные новые сущности, проводить последовательное теоретическое построение непротиворечивой картины Мира, объяснять известные эффекты, формулировать в экспериментально достижимых областях предсказания новых эффектов и, главное, пытаться с помощью субстанциональных подходов решать существующие проблемы естествознания. Среди таких проблем (Левич, 1993; 1996а):

    • Природа “течения” времени, или становления.
    • Природа “линейности” времени.
    • Парадокс необратимости противоречие между обратимостью во времени фундаментальных уравнений физики и явным отличием между прошлым и будущим в мире реальных процессов.
    • Противоречие между необходимостью выполнения второго начала термодинамики в замкнутой Вселенной и наблюдаемым отсутствием в ней видимых следов деградации.
    • Отсутствие общепринятых путей вывода, а не угадывания фундаментальных уравнений обобщенного движения в различных предметных областях науки.
    • Необходимость унифицированного описания специфических времен естествознания физического, биологического, психологического, геологического и т.д., с одной стороны, и необходимость возвращения времени его универсального статуса с другой.
    • Необходимость адекватного измерения собственного возраста самого широкого спектра естественных систем различных рангов.
    • Трудности научного прогнозирования.
    • Мечты человечества об “управлении” временем естественных систем.
    • Трудности научного обсуждения моделей вневременного бытия.
  • 819. Строение атома. Свет. Звуковые волны
    Другое Физика

    ,%20%d0%bd%d0%b0%d1%83%d0%ba%d0%b0%20<http://ru.wikipedia.org/wiki/%D0%9D%D0%B0%D1%83%D0%BA%D0%B0>,%20%d0%b8%d0%b7%d1%83%d1%87%d0%b0%d1%8e%d1%89%d0%b0%d1%8f%20%d0%bd%d0%b0%d0%b8%d0%b1%d0%be%d0%bb%d0%b5%d0%b5%20%d0%be%d0%b1%d1%89%d0%b8%d0%b5%20%d0%b8%20%d1%84%d1%83%d0%bd%d0%b4%d0%b0%d0%bc%d0%b5%d0%bd%d1%82%d0%b0%d0%bb%d1%8c%d0%bd%d1%8b%d0%b5%20%d0%b7%d0%b0%d0%ba%d0%be%d0%bd%d0%be%d0%bc%d0%b5%d1%80%d0%bd%d0%be%d1%81%d1%82%d0%b8,%20%d0%be%d0%bf%d1%80%d0%b5%d0%b4%d0%b5%d0%bb%d1%8f%d1%8e%d1%89%d0%b8%d0%b5%20%d1%81%d1%82%d1%80%d1%83%d0%ba%d1%82%d1%83%d1%80%d1%83%20%d0%b8%20%d1%8d%d0%b2%d0%be%d0%bb%d1%8e%d1%86%d0%b8%d1%8e%20%d0%bc%d0%b0%d1%82%d0%b5%d1%80%d0%b8%d0%b0%d0%bb%d1%8c%d0%bd%d0%be%d0%b3%d0%be%20%d0%bc%d0%b8%d1%80%d0%b0.%20%d0%97%d0%b0%d0%ba%d0%be%d0%bd%d1%8b%20%d1%84%d0%b8%d0%b7%d0%b8%d0%ba%d0%b8%20%d0%bb%d0%b5%d0%b6%d0%b0%d1%82%20%d0%b2%20%d0%be%d1%81%d0%bd%d0%be%d0%b2%d0%b5%20%d0%b2%d1%81%d0%b5%d0%b3%d0%be%20%d0%b5%d1%81%d1%82%d0%b5%d1%81%d1%82%d0%b2%d0%be%d0%b7%d0%bd%d0%b0%d0%bd%d0%b8%d1%8f.%20%d0%a2%d0%b5%d1%80%d0%bc%d0%b8%d0%bd%20%c2%ab%d1%84%d0%b8%d0%b7%d0%b8%d0%ba%d0%b0%c2%bb%20%d0%b2%d0%bf%d0%b5%d1%80%d0%b2%d1%8b%d0%b5%20%d0%bf%d0%be%d1%8f%d0%b2%d0%b8%d0%bb%d1%81%d1%8f%20%d0%b2%20%d1%81%d0%be%d1%87%d0%b8%d0%bd%d0%b5%d0%bd%d0%b8%d1%8f%d1%85%20%d0%be%d0%b4%d0%bd%d0%be%d0%b3%d0%be%20%d0%b8%d0%b7%20%d0%b2%d0%b5%d0%bb%d0%b8%d1%87%d0%b0%d0%b9%d1%88%d0%b8%d1%85%20%d0%bc%d1%8b%d1%81%d0%bb%d0%b8%d1%82%d0%b5%d0%bb%d0%b5%d0%b9%20%d0%b4%d1%80%d0%b5%d0%b2%d0%bd%d0%be%d1%81%d1%82%d0%b8%20-%20%d0%90%d1%80%d0%b8%d1%81%d1%82%d0%be%d1%82%d0%b5%d0%bb%d1%8f%20<http://ru.wikipedia.org/wiki/%D0%90%D1%80%D0%B8%D1%81%D1%82%D0%BE%D1%82%D0%B5%D0%BB%D1%8C>,%20%d0%b6%d0%b8%d0%b2%d1%88%d0%b5%d0%b3%d0%be%20%d0%b2%20IV%20%d0%b2%d0%b5%d0%ba%d0%b5%20%d0%b4%d0%be%20%d0%bd%d0%b0%d1%88%d0%b5%d0%b9%20%d1%8d%d1%80%d1%8b.%20%d0%9f%d0%b5%d1%80%d0%b2%d0%be%d0%bd%d0%b0%d1%87%d0%b0%d0%bb%d1%8c%d0%bd%d0%be%20%d1%82%d0%b5%d1%80%d0%bc%d0%b8%d0%bd%d1%8b%20%c2%ab%d1%84%d0%b8%d0%b7%d0%b8%d0%ba%d0%b0%c2%bb%20%d0%b8%20%c2%ab%d1%84%d0%b8%d0%bb%d0%be%d1%81%d0%be%d1%84%d0%b8%d1%8f%20<http://ru.wikipedia.org/wiki/%D0%A4%D0%B8%D0%BB%D0%BE%D1%81%D0%BE%D1%84%D0%B8%D1%8F>%c2%bb%20%d0%b1%d1%8b%d0%bb%d0%b8%20%d1%81%d0%b8%d0%bd%d0%be%d0%bd%d0%b8%d0%bc%d0%b8%d1%87%d0%bd%d1%8b,%20%d0%bf%d0%be%d1%81%d0%ba%d0%be%d0%bb%d1%8c%d0%ba%d1%83%20%d0%be%d0%b1%d0%b5%20%d0%b4%d0%b8%d1%81%d1%86%d0%b8%d0%bf%d0%bb%d0%b8%d0%bd%d1%8b%20%d0%bf%d1%8b%d1%82%d0%b0%d1%8e%d1%82%d1%81%d1%8f%20%d0%be%d0%b1%d1%8a%d1%8f%d1%81%d0%bd%d0%b8%d1%82%d1%8c%20%d0%b7%d0%b0%d0%ba%d0%be%d0%bd%d1%8b%20%d1%84%d1%83%d0%bd%d0%ba%d1%86%d0%b8%d0%be%d0%bd%d0%b8%d1%80%d0%be%d0%b2%d0%b0%d0%bd%d0%b8%d1%8f%20%d0%92%d1%81%d0%b5%d0%bb%d0%b5%d0%bd%d0%bd%d0%be%d0%b9%20<http://ru.wikipedia.org/wiki/%D0%92%D1%81%D0%B5%D0%BB%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F>.%20%d0%9e%d0%b4%d0%bd%d0%b0%d0%ba%d0%be%20%d0%b2%20%d1%80%d0%b5%d0%b7%d1%83%d0%bb%d1%8c%d1%82%d0%b0%d1%82%d0%b5%20%d0%bd%d0%b0%d1%83%d1%87%d0%bd%d0%be%d0%b9%20%d1%80%d0%b5%d0%b2%d0%be%d0%bb%d1%8e%d1%86%d0%b8%d0%b8%20<http://ru.wikipedia.org/wiki/%D0%9D%D0%B0%D1%83%D1%87%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%B2%D0%BE%D0%BB%D1%8E%D1%86%D0%B8%D1%8F>%20XVI%20%d0%b2%d0%b5%d0%ba%d0%b0%20%d1%84%d0%b8%d0%b7%d0%b8%d0%ba%d0%b0%20%d0%b2%d1%8b%d0%b4%d0%b5%d0%bb%d0%b8%d0%bb%d0%b0%d1%81%d1%8c%20%d0%b2%20%d0%be%d1%82%d0%b4%d0%b5%d0%bb%d1%8c%d0%bd%d0%be%d0%b5%20%d0%bd%d0%b0%d1%83%d1%87%d0%bd%d0%be%d0%b5%20%d0%bd%d0%b0%d0%bf%d1%80%d0%b0%d0%b2%d0%bb%d0%b5%d0%bd%d0%b8%d0%b5.">Физика область естествознания <http://ru.wikipedia.org/wiki/%D0%95%D1%81%D1%82%D0%B5%D1%81%D1%82%D0%B2%D0%BE%D0%B7%D0%BD%D0%B0%D0%BD%D0%B8%D0%B5>, наука <http://ru.wikipedia.org/wiki/%D0%9D%D0%B0%D1%83%D0%BA%D0%B0>, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Законы физики лежат в основе всего естествознания. Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности - Аристотеля <http://ru.wikipedia.org/wiki/%D0%90%D1%80%D0%B8%D1%81%D1%82%D0%BE%D1%82%D0%B5%D0%BB%D1%8C>, жившего в IV веке до нашей эры. Первоначально термины «физика» и «философия <http://ru.wikipedia.org/wiki/%D0%A4%D0%B8%D0%BB%D0%BE%D1%81%D0%BE%D1%84%D0%B8%D1%8F>» были синонимичны, поскольку обе дисциплины пытаются объяснить законы функционирования Вселенной <http://ru.wikipedia.org/wiki/%D0%92%D1%81%D0%B5%D0%BB%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F>. Однако в результате научной революции <http://ru.wikipedia.org/wiki/%D0%9D%D0%B0%D1%83%D1%87%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%B2%D0%BE%D0%BB%D1%8E%D1%86%D0%B8%D1%8F> XVI века физика выделилась в отдельное научное направление.

  • 820. Структура и свойства пьезокерамических материалов, легированных никелем и медью
    Другое Физика

    Технология керамических материалов очень сложна и малейшие отклонения в ходе химических реакций могут по-разному сказываться на процессах синтеза пьезокерамических материалов. Для получения в производственных условиях изделий со строго заданными свойствами, что очень актуально для современной техники, необходимо, чтобы технология обеспечивала возможность управления такими важными характеристиками материала как его однородность и фазовый состав, кристаллическая структура, размеры кристаллитов, пористость [1]. Обжиг керамических изделий протекает при температурах выше 1000оС. Керамические материалы только в процессе обжига приобретают плотную, монолитную структуру и все присущие им физические и механические свойства [2]. Синтез из оксидов пьезокерамики на основе твердого раствора цирконата-титаната свинца является одной из наиболее энергоемких и длительных операций в производстве пьезокерамических изделий. Большое внимание уделяется изучению кинетики этого процесса и возможных методов его интенсификации [1,3]. Одним из таких способов является введение модифицирующих добавок [4]. В работе рассмотрено влияние добавок меди и никеля, осажденных на шихту керамики из раствора, что позволяет добиться равномерного распределения микродобавки по всему объему смеси, исключая операцию длительного перемешивания, на структуру и свойства керамики ЦТБС3М.