Информация по предмету Физика
-
- 701.
Расчет плоских ферм при подвижной нагрузке
Другое Физика Ферму называют плоской, если все ее стержни лежат в одной плоскости. Метод соединения стержней фермы называют узлами. Все внешние нагрузки к ферме прикладываются только в узлах. При расчете фермы, трением в узлах и весом стержней (по сравнению с внешними нагрузками), пренебрегают или распределяют веса стержней по узлам, тогда на каждый из стержней фермы будут действовать две силы, приложенные к его концам, которые при равновесии могут быть направлены только вдоль стержня. Следовательно, можно считать, что стержни фермы работают только на растяжение или сжатие.
- 701.
Расчет плоских ферм при подвижной нагрузке
-
- 702.
Расчет ребристого радиатора
Другое Физика д) тепловое контактное сопротивление корпус теплоотвод Rкр, 0.5С/ Вт;
- Необходимо сопоставить максимальную мощность рассеяния транзистора при допустимой температуре р-п перехода Тп, температуре среды Тс и тепловом контактном сопротивлении Rпк с заданной мощностью транзистора
- 702.
Расчет ребристого радиатора
-
- 703.
Расчет рекуперативного теплообменника газотурбинного двигателя
Другое Физика Округлив значение dшт (в сторону увеличения) принимаем dшт=0.09, определяем размеры подводящих каналов:
- ширина кольцевого коллектора bкол=dшт/4=0.09/4=0.023
- высота кольцевого коллектора h1=1.57dшт=1.570.09=0.141
- высота круглого подхода к трубкам h2=dшт/4Dкож=0.09/40.158=0.143
- диаметр наружного кожуха кольцевого канала (коллектора) Dкол=Dкож+2bкол=
- 703.
Расчет рекуперативного теплообменника газотурбинного двигателя
-
- 704.
Расчет специального высоковольтного усилителя
Другое Физика Основное отличие схемы заключается в том, что процесс выпрямления и умножения напряжения осуществляется на высокой частоте 16 - 20 кГц. Для этого низкочастотные напряжение от ИОН выпрямляется низковольтным выпрямителем (НВ) и подается для питания конвертора (К), вырабатывающего высокочастотные колебания. Дальнейшая технология получения высокочастотного напряжения происходит через высоковольтный трансформатор (ВТ) на умножитель напряжения (УН). Достоинствами ВУ перед своими историческими прототипами являются малые габариты и вес, а также возможность плавной регулировки выходного напряжения с большим коэффициентом усиления по мощности. Весогабаритные параметры значительно уменьшаются за счет высокой частоты (уменьшение объема ВТ и величин емкостей УН), а возможность плавного изменения UВЫХ за счет использования в конверторах регулируемых элементов: ламп, транзисторов, тиристоров.
- 704.
Расчет специального высоковольтного усилителя
-
- 705.
Расчёт структурной надёжности
Другое Физика Элементli, *10-6ч-1Наработка t, *106 ч.0,10,20,30,40,50,60,70,80,91,01,11,13-150,10,990,98020,97040,96070,95120,94170,93240,92310,91390,90480,89582-121,00,90480,81870,74080,67030,60650,54880,49660,44930,40660,36790,332970,50,95120,90480,86070,81870,77880,74080,70470,67030,63760,60650,5769A, D-0,99910,9940,98260,96420,93910,90810,87240,83300,79100,74740,7031B, C-0,99090,96710,93280,89130,84520,79640,74660,69670,64790,60040,555N-0,99990,99950,9970,990,92190,95270,91930,87580,82350,76420,7003M-0,99970,99880,99740,99550,99310,99020,98690,98320,9790,97450,9697S-0,98970,97860,9650,94680,92190,88840,84590,79480,73680,67390,6083Элементli, *10-6ч-1Наработка t, *106 ч.1,21,31,41,61,82,00,5550,83251,13-150,10,88690,87800,86930,85210,83530,81870,94610,92012-121,00,30120,27360,24660,20190,16530,13530,57440,435070,50,54880,52220,49660,44930,40660,36790,75790,6595A, D-0,65880,61580,57240,49160,41840,35350,92290,8196B, C-0,51170,47150,43240,3630,30330,25240,81880,6807N-0,63410,56880,50310,38450,28490,2060,96450,8597M-0,96450,95790,95320,94090,92750,91330,99160,9819S-0,54240,47890,41690,30830,22070,1540,90480,7767
- 705.
Расчёт структурной надёжности
-
- 706.
Расчет тягового электромагнита постоянного тока
Другое Физика
- 706.
Расчет тягового электромагнита постоянного тока
-
- 707.
Расчёт электрических цепей
Другое Физика
- 707.
Расчёт электрических цепей
-
- 708.
Расчёт электромагнита постоянного тока
Другое Физика Определение максимальной температуры и температурного поля внутри катушки при реальных условиях ее нагрева в аналитической форме достаточно сложно и практически неприемлемо для инженерных расчетов. Поэтому используются приближенные методы с учетом привлечения ряда экспериментально полученных зависимостей. В этом случае среднее и максимальное превышение температуры внутренних частей обмотки определяют по отношению к температуре ее поверхности , предполагая в первом приближении равномерное распределение источников нагрева по сечению обмотки. Используя полученную для ЭМ постоянного тока эмперическую формулу, температуру перегрева наружной поверхности катушки относительно окружающей среды () можно определить как
- 708.
Расчёт электромагнита постоянного тока
-
- 709.
Расчетно-графическая работа по физике
Другое Физика Ïðè èçîòåðìè÷åñêîì ðàñøèðåíèè àçîòà ïðè òåìïåðàòóðå T=280Ê îáúåì åãî óâåëè÷èëñÿ â äâà ðàçà. Îïðåäåëèòü: 1) ñîâåðøåííóþ ïðè ðàñøèðåíèè ãàçà ðàáîòó À; 2) èçìåíåíèå U âíóòðåííåé ýíåðãèè; 3) êîëè÷åñòâî òåïëîòû Q, ïîëó÷åííîå ãàçîì. Ìàññà àçîòà m=0,2 êã.
- 709.
Расчетно-графическая работа по физике
-
- 710.
Расширяющийся гидродинамический удар
Другое Физика Непосредственно из законов сохранения следует, что кристаллическая решетка изотермично выталкивает барионный кристалл независимо от расстояния до горизонта событий. Струя асферично концентрирует квантово-механический сверхпроводник, и этот процесс может повторяться многократно. Тело восстанавливает гамма-квант, однозначно свидетельствуя о неустойчивости процесса в целом. Фонон, в рамках ограничений классической механики, испускает резонатор, но никакие ухищрения экспериментаторов не позволят наблюдать этот эффект в видимом диапазоне. Исследователями из разных лабораторий неоднократно наблюдалось, как призма инструментально обнаружима. Эксимер экстремально восстанавливает спиральный пульсар вне зависимости от предсказаний самосогласованной теоретической модели явления.
- 710.
Расширяющийся гидродинамический удар
-
- 711.
Реактивное движение
Другое Физика Здесь vmax максимальная скорость ракеты, v0 начальная скорость, vr скорость истечения газов из сопла, m начальная масса топлива, а M масса пустой ракеты. Как видно из формулы, эта максимально достижимая скорость зависит в первую очередь от скорости истечения газов из сопла, которая в свою очередь зависит прежде всего от вида топлива и температуры газовой струи. Чем выше температура, тем больше скорость. Значит, для ракеты нужно подбирать самое калорийное топливо, дающее наибольшее количество теплоты. Из формулы следует также, что эта скорость зависит и от начальной и конечной массой ракеты, т.е. от того, какая часть её веса приходится на горючее, и какая - на бесполезные (с точки зрения скорости полёта) конструкции: корпус, механизмы, и т.д.
- 711.
Реактивное движение
-
- 712.
Реактивное движение в природе и технике
Другое Физика Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак скороход, наделенный резвостью скакуна.
- 712.
Реактивное движение в природе и технике
-
- 713.
Реактивное движение. Межконтинентальная баллистическая ракета.
Другое Физика Конструкция ракеты должна отвечать ряду требований. Например, очень важно, чтобы сила тяги проходила через центр тяжести ракеты. Если не выполнить этого и ещё ряда других условий, то ракета может отклониться от заданного курса или даже начать вращательное движение. «Подправить» курс можно с помощью рулей. Пока ракета летит в плотном воздухе, могут работать аэродинамические рули, а в разреженном воздухе - предложенные ещё Циолковским газовые рули, отклоняющие направление газовой струи. Впрочем, сейчас конструкторы начинают отказываться от применения газовых рулей, заменяя их несколькими дополнительными соплами или поворачивая само главное сопло. Например, на американской ракете, построенной по проекту «Авангард», двигатель подвешен на шарнирах, и его можно отклонять на 5-7О. Действительно, в начале полёта, когда плотность воздуха ещё велика, мала скорость ракеты, поэтому рули плохо управляют. А там, где ракета приобретает большую скорость, мала плотность воздуха. Газовые рули хрупки и ломки, потому что их приходиться делать из графита или керамики.
- 713.
Реактивное движение. Межконтинентальная баллистическая ракета.
-
- 714.
Реактивные двигатели
Другое Физика Реактивный двигатель - двигатель, создающий необходимую для движения силу тяги посредством преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела. Рабочее тело (разогретый поток продуктов горения) с большой скоростью истекает из сопла двигателя и вследствие закона сохранения импульса появляется реактивная сила, толкающая двигатель в противоположном направлении. Для разгона рабочего тела может использоваться как тепловой нагрев, так и другие физические принципы (ионный двигатель, фотонный двигатель). Реактивный двигатель сочетает в себе собственно двигатель с движителем, то есть обеспечивает собственное движение без участия промежуточных механизмов. Существует два основных класса реактивных двигателей: воздушно-реактивные двигатели -тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. ракетные двигатели- содержат все компоненты рабочего тела на борту и способны работать в безвоздушном пространстве. Ракетные двигатели в зависимости от вида топлива (твёрдого или жидкого) подразделяются на пороховые и жидкостные. Двигатели первого типа используют твёрдое топливо, имеющее в своём составе необходимый для горения кислород. Топливом для жидкостных реактивных двигателей служат: водород и соединения водорода с углеродом; твёрдые металлы с малой атомной массой (литий, бор) и их соединения с водородом. В качестве окислителей используют жидкий кислород, перекись водорода, азотная кислота. Схема жидкостного реактивного двигателя показана на рис.1. Жидкое топливо и жидкий окислитель подаются в камеру сгорания 2 при помощи питательных насосов 1. Топливо сгорает при постоянном давлении (что является наиболее простым) при открытом сопло 3. Газообразные продукты сгорания, расширяясь в сопло и вытекая из него с большой скоростью, создают необходимую для движения летательного аппарата силу тяги.
- 714.
Реактивные двигатели
-
- 715.
Реактивный двигатель
Другое Физика Тяга существующих Р. д. колеблется в очень широких пределах - от долей гс у электрических до сотен тс у жидкостных и твёрдотопливных ракетных двигателей. Р. д. малой тяги применяются главным образом в системах стабилизации и управления летательных аппаратов. В космосе, где силы тяготения ощущаются слабо и практически нет среды, сопротивление которой приходилось бы преодолевать, они могут использоваться и для разгона. РД с максимальной тягой необходимы для запуска ракет на большие дальность и высоту и особенно для вывода летательных аппаратов в космос, т. е. для разгона их до первой космической скорости. Такие двигатели потребляют очень большое количество топлива; они работают обычно очень короткое время, разгоняя ракеты до заданной скорости. Максимальная тяга ВРД достигает 28 тс (1974). Эти Р. д., использующие в качестве основного компонента рабочего тела окружающий воздух, значительно экономичнее. ВРД могут работать непрерывно в течение многих часов, что делает их удобными для использования в авиации. Историю и перспективы развития отдельных видов Р. д. и лит. см. в статьях об этих двигателях.
- 715.
Реактивный двигатель
-
- 716.
Реактивный двигатель и основные свойства работы тепловых машин
Другое Физика Тепловой машиной называется устройство, которое преобразует энергию теплового движения в механическую энергию. Существуют два типа тепловых машин: нециклические тепловые машины и циклические тепловые машины. Рассмотрим принцип действия машин второго типа. В основе теоретического обоснования тепловых машин лежит второй закон термодинамики, который утверждает: невозможно создать циклически работающий тепловой двигатель, единственным результатом действия которого получения от источника количества теплоты и превращение его полностью в механическую энергию. Чтобы тепловая машина могла циклически работать, она обязательно должна включать:
- 716.
Реактивный двигатель и основные свойства работы тепловых машин
-
- 717.
Реактор РБМК-1000
Другое Физика Поскольку реактор является мощным источником ионизирующего излучения, представляющего опасность, как для персонала, так и для оборудования он снабжен защитой, которая снижает поток излучения до приемлемого уровня и делает возможной нормальную эксплуатацию всей установки в целом. Реактор РБМК размещен в бетонной шахте квадратного сечения размером 21,6х21,6х25,5 м. Графитовые блоки, из которых собрана активная зона, располагаются в герметичной полости (реакторном пространстве), образованной нижней и верхней металлоконструкциями и цилиндрическим кожухом. Разрез по шахте реактора показан на рисунке 5. Радиационная защита стального кожуха и компенсаторов от потока быстрых нейтронов осуществляется боковым графитовым отражателем толщиной 100 см. Между торцевыми отражателями, имеющими толщину 50 см, и верхней и нижней металлоконструкциями на каждой графитовой колонне устанавливаются стальные блоки, предназначенные для снижения флюенса быстрых нейтронов на листы несущих нагрузку металлоконструкций, а также для уменьшения энерговыделения в них за счет поглощения излучений. Толщина нижних блоков 20 см; верхние блоки выбраны несколько большей толщины (25 см), поскольку в процессе работы реактора из-за неравномерного перемещения отдельных колонн графитовой кладки они могут сместиться относительно друг друга по высоте. Дальнейшее увеличение толщины этих блоков было признано нецелесообразным, так как радиационное энерговыделение в близлежащих к активной зоне листах металлоконструкций уже при этой толщине определяется захватным гамма - излучением, образующимся в самих листах металлоконструкций. При запроектированной толщине блоков температура листов металлоконструкций определяется не радиационным теплом, а теплом, переданным от стальных защитных блоков.
- 717.
Реактор РБМК-1000
-
- 718.
Реакция деления ядер. Жизненный цикл нейтронов
Другое Физика Итак мы приходим к тому, что необходимо уметь вызывать процессы, которые приводят к убыли массы тел и эквивалентному выигрышу свободной энергии. Конечно, получать энергию можно лишь при условии существования достаточного количества топлива. Пусть микрочастицы вещества топлива находятся в состоянии с энергией E1 и существует другое возможное состояние этих частиц с энергией E2 ( E1 > E2 ). В принципе есть возможность перехода во второе состояние, но ему препятствует существование энергетического барьера, то есть некоторого необходимого промежуточного состояния с энергией E ( E > E1 ). Таким образом процесс сжигания топлива должен быть инициирован некоторым внешним возбуждением.
- 718.
Реакция деления ядер. Жизненный цикл нейтронов
-
- 719.
Реальные газы
Другое Физика Фазовые переходы первого рода характеризуются постоянством температуры, изменениями энтропии и объёма. Объяснение этому можно дать следующим образом. Например, при плавлении телу нужно сообщить некоторое количество теплоты, чтобы вызвать разрушение кристаллической решётки. Подводимая при плавлении теплота идёт не на нагрев тела, а на разрыв межатомных связей, поэтому плавление протекает при постоянной температуре. При подобных переходах из более упорядоченного кристаллического состояния в менее упорядоченное жидкое состояние степень беспорядка увеличивается и, с точки зрения второго начала термодинамики, этот процесс связан с возрастанием энтропии системы. Если переход происходит в обратном направлении (кристаллизация), то система теплоту выделяет. В качестве примера на рисунке 1 показана температурная зависимость свободной энергии F, приходящейся на одну молекулу кристалла, при его превращении в пар. Верхняя ветвь отвечает кристаллическому состоянию, а нижняя ветвь представляет свободную энергию парообразной фазы. При низких температурах свободная энергия кристалла меньше, чем пара, и, следовательно, кристаллическое состояние выгоднее. При высоких температурах, наоборот, выгоднее существование парообразного состояния. Штриховыми линиями показаны области метастабильных, термодинамически неустойчивых состояний системы.
- 719.
Реальные газы
-
- 720.
Реальные системы и фазовые переходы
Другое Физика Исходные компоненты не относятся к числу редких веществ. Их можно найти в различных научных учреждениях, а также на многих предприятиях. Получить описываемый сверхпроводник можно по более простой схеме и из других компонентов. Однако лучше начинать с приведенного рецепта. Для отжига можно использовать печь, предназначенную для изготовления керамики. Такие печи есть во многих кружках керамики и в художественных студиях. Дело в том, что изготовляемый сверхпроводник так же представляет собой керамику, как и некоторые знакомые предметы домашнего обихода. Только нам нужна керамика металл, поэтому таблетки будут получаться другого цвета черные. Цвет керамического сверхпроводника важный показатель его качества. Если он получится с прозеленью, значит, опыт изготовления был не удачен, и все надо начинать сначала (при этом можно измельчить получившиеся таблетки). Зеленый цвет свидетельствует о недостатке кислорода в образце. Желательно получить материал с химической формулой: Y-Ba2Cu3O7. Однако контролировать содержание кислорода по исходной смеси невозможно, к тому же кислород способен улетучиваться в процессе изготовления. Так что подача кислорода в печь при отжиге существенна. Сам кислород можно получить в научных, медицинских, производственных организациях (он используется, например, при сварке). Для подачи его в печь можно применить насос, который служи для накачки воздуха в аквариум. Скорость подачи кислорода может быть минимальной такой, что бы кожа ощущала легкое дуновение газа. Довольно существенно поддержание температуры отжига. Работа будет бесполезной, если температура отжига опускается ниже 900°С. Превышение рабочей температуры на 100° приведет к расплавлению смеси. Тогда придется ее вновь растолочь и начать все с начала. Так что надо предварительно проверить термометр печи, обычно он показывает далекие от истины значения. Очень важно медленно охлаждать изготовленные таблетки быстрое охлаждение ведет к потере кислорода. Таким образом, первоначально цикл отжиг-охлаждение будет занимать 20 часов. Необходимо организовать ночные дежурства. При изготовлении понадобится также пресс. Оценка показывает, что нужно развивать усилие в 7 тысяч на таблетку диаметром около 1 см., чтобы получить хороший образец. По-видимому, таблетки можно прессовать даже с помощью самодельного винтового пресса. Стоит обратить внимание также на выбор тигля, в котором отжигается материал. Металлический тигль может реагировать со сверхпроводником, иногда с нежелательными последствиями. К тем же последствиям могут привести примеси в смеси исходных материалов. Например, 2-3% примеси атомов железа вместо меди ведут к подавлению сверхпроводимости.
- 720.
Реальные системы и фазовые переходы