Информация по предмету Физика

  • 741. Сверхизлучение
    Другое Физика

    В образцах больших размеров могут распространятся электромагнитные волны, которые в инвертированной двухуровневой среде обладают специфическими свойствами. Если плотность инвертированных молекул относительно невелика, то эти свойства отчетливо не проявляются и в таком образце реализуется режим, характерный для импульсных лазеров и мазеров. Однако при высокой плотности ?N в условиях, когда реализуется неравенство ?T2 » 1, наряду с обычными электромагнитными волнами в безграничной среде распространяются так называемые волны поляризации, обладающие отрицательной энергией, которая сосредоточена в колебаниях поляризации (а не электрического поля, энергия которого относительно мала). В инвертированных образцах с отражающими стенками эти волны образуют поляритонные моды, локализованные внутри образца. И наконец, если стенки образца имеют коэффициент отражения R < 1, то поляритонные моды выходят за его границы, но уже в виде обычной электромагнитной волны. Ситуация здесь совершенно аналогична рассмотренной на примере крупинки: внутри образца существует поляритонная мода с отрицательной энергией. Излучение электромагнитных волн за пределы образца ведет к уменьшению энергии этой моды и росту амплитуды колебаний в ней. Таким образом, снова реализуется диссипативная неустойчивость. В неограниченных образцах такая неустойчивость волн с отрицательной энергией возможна при наличии поглощения этих волн в веществе (например, омических потерь), а в ограниченных системах за счет потери энергии этих волн на излучение наружу. В результате в неограниченных образцах и образцах с R > 1 возможен режим сверхпоглощения, а в открытых образцах с R < 1 режим сверхизлучения.

  • 742. Сверхизлучение - спонтанное излучение многоатомной системы
    Другое Физика

    Сверхизлучение наблюдалось и в радиочастотном диапазоне длин волн. Это были эксперименты родственные ядерному магнитному резонансу (ЯМР). Известно, что во внешнем магнитном поле спиновый магнитный момент протона имеет два стационарных состояния и соответственно два уровня энергии. В основном состоянии магнитный момент направлен по внешнему магнитному полю, в возбужденном состоянии - против магнитного поля. Для обычно используемых в экспериментах по ЯМР магнитных полях (порядка нескольких тесла) частота перехода соответствует длине волны в несколько метров. Такая система является идеальным примером двухуровневой квантовой системы. Возможен ли спонтанный переход к такой системе? Практически нет, поскольку его вероятность которая может быть оценена по теории Дирака, имеет порядок 10-25 с-1, следовательно, характерное время распада составляет более чем астрономическую величину 1025 с. Если же оценить время сверхизлучения по формуле (N)-1 как для системы, имеющей размеры меньше длины волны излучения, то получится не столь разочаровывающий результат, поскольку полное число протонов в образце может быть порядка 1023. Но на самом деле условия наблюдения сверхизлучения являются еще более благоприятными. Было показано, что сверхизлучение в системе ядерных спинов можно наблюдать, только если она находится в высокодобротном резонаторе. При этом усиление эффекта, то есть сокращение времени излучения, происходит в Q3/V раз, где Q - добротность радиочастотного контура, - длина волны, V - объем резонатора. Этот фактор может быть 100 или 1000. Таким образом длительность импульса сверхизлучения в такой системе будет порядка миллисекунд. Сверхизлучение в системе ядерных спинов сравнительно недавно наблюдалось в объединенном институте ядерных исследований (Дубна) и Институте ядерной физики РАН (Гатчина).

  • 743. Сверхпроводимость : история развития, современное состояние, перспективы
    Другое Физика

    Однако довольно быстро выяснилось, что придуманный Литллом пример никоем образом перейти в сверхпроводящее состояние не способен. Но энтузиазм рожденный смелой идей ,дал свои плоды, пускай и не там, где они предвиделись на первых порах. Сверхпроводимость была таки обнаружена за пределами мира металлов. В 1980 году в Дании группа исследователей под руководством К. Бекгарда, эксперементируя с органическим веществом из класа ион-радикальных солей, перевела его в сверхпроводящее состояние при давлении 10 килобар и температуре на 0,9 градуса выше абсолютного нуля. В 1983 году коллектив советских физиков , возглавляемый доктором физико-математических наук И.Ф. Щеголевым, добился от вещества того же класса перехода в сверхпроводящее состояние уже при 7 градусах абсолютной шкалы температур и при нормальном давлении.В ходе всех этих поисков и проб вниманием исследователей не был обойден и карбин.( Карбин - органическое вещество, крайне редко встречающееся в природе. Структура которого - бесконечные линейные цепочки из атомов углерода.Свою структуру сохраняет при нагреве до 2000 С , а затем, начиная примерно с 2300 С, она перестраивается по типу кристаллической решётки графита.Плотность карбина составляет 1,92,2 г/см.

  • 744. Сверхпроводимость и ее применение в физическом эксперименте
    Другое Физика

    Применение сверхпроводимости в турбогенераторах большой мощности перспективно потому, что именно здесь удается достигнуть того, чего при других технических решениях сделать невозможно, а именно, уменьшить массу и габариты машины при сохранении мощности. В обычных машинах это уменьшение всегда связано с увеличением потерь и трудностями обеспечения высокого КПД. Здесь этот вопрос решается радикально: массу турбогенераторов можно увеличить в 2-2,5 раза, в тоже время в связи с отсутствием потерь в роторе удается повысить КПД примерно на 0,5% и приблизиться для крупных турбогенераторов к КПД порядка 99,3%. Повышение КПД турбогенераторов на 0.1% компенсирует затраты, связанные с созданием генераторов на 30%. В этих условиях экономия энергии, получаемая за счет снижения потерь, очень быстро оправдывает те затраты, которые вкладываются в создание новых сверхпроводниковых машин. Экономически это, конечно, оправдано, но все дело в том, что для того, чтобы выйти в энергетику с большими машинами, нужно пройти очень сложный путь создания машин все больших мощностей. При этом нужно решать и более трудную проблему - обеспечение высокой надежности. Очень важным моментом в этой связи, является отработка токовводов при создании машин высокой мощности. Перепад температур на токовводах составляет около 300К, они имеют внутренние источники тепловыделения, и поэтому представляют собой один из наиболее напряженных в эксплуатационном отношении узлов сверхпроводникового электротехнического устройства, являясь потенциально опасным источником аварий в криогенной зоне. Поэтому, при разработке токовводов, в первую очередь необходимо обращать внимание на надежность их работы, обеспечивая ее даже в ущерб тепло- и электрохарактеристикам токовводов.

  • 745. Сверхпроводимость и низкие температуры
    Другое Физика

    Энергетическая щель в сверхпроводниках непосредственно наблюдается на опыте. При этом не только подтверждается существование щели в спектре, но и измеряется ее величина. Исследовался переход электронов через тонкий непроводящий слой толщиной ~10Å, разделяющий нормальную и сверхпроводящую пленки. При наличии барьера имеется конечная вероятность прохождения электрона через барьер. В нормальном металле заполнены все уровни энергии, вплоть до максимального ?f, в сверхпроводящем же до ?f-?. Прохождение тока при этом невозможно. Наличие энергетической щели в сверхпроводнике приводит к отсутствию соответствующих состояний, между которыми происходил бы переход. Для того чтобы переход мог произойти, необходимо поместить систему во внешнее электрическое поле. В поле вся картина уровней смещается. Эффект становится возможным, если приложенное внешнее напряжение становится равным ?/e. На графике видно, что туннельный ток появляется при конечном напряжении U, когда eU равно энергетической щели. Отсутствие туннельного тока при сколь угодно малом приложенном напряжении является доказательством существования энергетической щели.

  • 746. Сверхпроводимость проводников
    Другое Физика

    Квантование магнитного потока может быть использовано для создания пространства,в котором вообще отсутствует магнитное поле.Если охладить цилиндр,внутри которого имеется слабое магнитное поле, до температуры ниже критической, то внутри цилиндра “заморозится” некоторый магнитный поток.Если после этого мы начнем постепенно увеличивать радиус цилиндра,то число квантов потока не изменится, но увеличение площади сечения повлечет за собой соответствующее уменьшение напряженности поля.Если использовать несколько вложенных друг в друга цилиндров.то описанным путем можно в конце концов добиться того, что во внутреннем цилиндре не будет содержаться ни одного кванта потока.

  • 747. Сверхпроводимость. Эффекты Джозефсона
    Другое Физика
  • 748. Сверхпроводники
    Другое Физика

    Ферми-поверхность Sr2RuO4: эффект де Гааз-ван Альфена против фотоэмиссии с угловым разрешением
    Открытое недавно соединение Sr2RuO4 замечательно тем, что является пока единственным примером слоистого перовскита, не содержащего меди, в котором обнаружена сверхпроводимость. Это соединение относится к классу т.н. “самодопированных” проводников благодаря низкому значению параметра U/W (U - энергия кулоновского отталкивания на узле, W - ширина зоны), т.е. роль электронных корреляций здесь не столь важна, как, например, в купратах. Относительно небольшое значение температуры СП перехода (~1К) предопределило успешное применение гальваномагнитных (ГМ) методов для исследования поверхности Ферми в нормальном состоянии. Как известно, в купратах использовать эффект де Гааз-ван Альфена напрямую не удается из-за высоких значений Тс и Нс2, а эксперименты в смешанном состоянии существенно усложняют интерпретацию экспериментальных данных. Использование гальваномагнитных методов привлекательно по той причине, что в этом случае удается восстановить поверхность Ферми во всей зоне Бриллюэна и провести сравнение с соответствующими данными по фотоэмиссии. В отличие от принципиально поверхностного метода фотоэлектронной спектроскопии (ФЭС, глубина выхода фотоэлектронов не превышает 10-20A, т.е. меньше размера элементарной ячейки вдоль оси с), ГМ методы - существенно объемные. В связи с огромным количеством информации о деталях ферми-поверхности купратов, полученной с помощью ФЭС с угловым разрешением (ФЭСУР), и отсутствием альтернативных методов исследования ферми-поверхности ВТСП, такое сравнение представляет несомненный интерес, поскольку дает представление о надежности информации об объемной электронной структуре вещества, полученной с помощью поверхностного метода исследования.

  • 749. Свет – электромагнитная волна. Скорость света. Интерференция света. Стоячие волны.
    Другое Физика

    В XVII веке возникло две теории света: волновая и корпускулярная. Корпускулярную[1] теорию предложил Ньютон, а волновую Гюйгенс. Согласно представлениям Гюйгенса свет волны, распространяющиеся в особой среде эфире, заполняющем все пространство. Две теории длительное время существовали параллельно. Когда одна из теорий не объясняла какого-то явления, то оно объяснялось другой теорией. Например, прямолинейное распространение света, приводящее к образованию резких теней нельзя было объяснить исходя из волновой теории. Однако в начале XIX века были открыты такие явления как дифракция[2] и интерференция[3], что дало повод для мыслей, что волновая теория окончательно победила корпускулярную. Во второй половине XIX века Максвелл показал, что свет частный случай электромагнитных волн. Эти работы послужили фундаментом для электромагнитной теории света. Однако в начале XX века было обнаружено, что при излучении и поглощении свет ведет себя подобно потоку частиц.

  • 750. Световые явления в атмосфере
    Другое Физика

    Обыкновенный круг или малое гало это блестящий круг (черт. 2), окружающий светило, его радиус около 22°; он окрашен в красноватый цвет с внутренней стороны, затем слабо заметен желтый, далее цвет переходит в белый и постепенно сливается с общим голубоватым тоном неба. Пространство внутри круга кажется сравнительно темным; внутренняя граница круга резко очерчена. Круг этот образуется преломлением света в ледяных иглах, носящихся во всевозможных положениях в воздухе. Угол наименьшего отклонения лучей в ледяной призме приблизительно 22°, поэтому все лучи, прошедшие сквозь кристаллики, должны показаться наблюдателю отклоненными от источника света по крайней мере на 22°; отсюда темнота внутреннего пространства. Красный цвет, как наименее преломляемый, покажется и наименее отклоненным от светила; за ним идет желтый; остальные лучи, смешиваясь между собой, дадут впечатление белого цвета. Реже встречается гало с угловым радиусом 46градусов, располагающееся концентрически вокруг 22-градусного гало. Его внутренняя сторона тоже имеет красноватый оттенок. Причиной этого также является преломление света, происходящее в этом случае в ледяных иглах, обращенных к светилу углами в 90°; круг этот обыкновенно бледнее малого, но цвета в нем разделены резче. Ширина кольца такого гало превышает 2,5 градуса. Как 46-градусные, так и 22-градусные гало, как правило, имеют наибольшую яркость в верхней и нижней частях кольца. Изредка встречающееся 90-градусное гало представляет собой слабо светящееся, почти бесцветное кольцо, имеющее общий центр с двумя другими гало. Если оно окрашено, то имеет красный цвет на внешней стороне кольца. Механизм возникновения такого типа гало до конца не выяснен.

  • 751. Світ 3D ефектів
    Другое Физика

    Це такий собі пристрій, що в більшості складається з полі карбонатного куполу в середині якого знаходиться напівпрозорий екран у формі диска діаметром 254 мм який рухається навколо вертикальної осі зі швидкістю 900 об/хв. Система отримує данні зі сканеру компютера, магнітно-резонансного або ж позитронно-емісійного томографа, математичними методами сегментує інформацію на 198 радіальних елементів у формі дольки яблука. Ці дольки що зберігаються в буфері кадрів на три пристрої відображення Digital Light Processor(DLP), що представляють собою матриці з сотень тисяч мікроскопічних дзеркал, кути нахилу яких змінюються внутрішньою електронікою.

  • 752. Свободное падение тел
    Другое Физика

    Два шарика закреплены на концах легкого горизонтального стержня, подвешенного за середину к тонкой нити. Когда шар, обозначенный буквой А, подносят близко к одному из подвешенных шаров, сила гравитационного притяжения заставляет закрепленный на стержне шар сдвинуться, что приводит к небольшому закручиванию нити. Это незначительное смещение измеряется с помощью узкого пучка света, направленного на зеркало, укрепленное на нити так, что отраженный пучок света падает на шкалу. Проделанные ранее измерения закручивания нити под действием известных сил позволяют определить величину силы гравитационного взаимодействия, действующей между двумя телами. Прибор такого типа применение в конструкции измерителя силы тяжести, с помощью которого можно измерить весьма небольшие изменения силы тяжести вблизи горной породы, отличающейся по плотности от соседних пород. Этот прибор используется геологами для исследований земной коры и разведки геологических особенностей, указывающих на месторождение нефти. В одном из вариантов прибора Кавендиша два шарика подвешиваются на разной высоте. Тогда они будут по разному притягиваться близким к поверхности месторождением плотной горной породы; поэтому планка при надлежащей ориентации относительно месторождения будет слегка поворачиваться. Разведчики нефти заменяют теперь эти измерители силы тяжести инструментами, непосредственно измеряющими небольшие изменения величины ускорения силы тяжести g о которых будет сказано позже.

  • 753. Свойства газов
    Другое Физика

    Легко видеть, что давление газа, заключенного в постоянный объем, не является прямо пропорциональным температуре, отсчитанной по Шкале Цельсия. Это ясно, например, из таблицы, приведенной в предыдущей главе. Если при 100° С давление газа равно 1,37 кГ1см2, то при 200° С оно равно 1,73 кГ/см2. Температура, отсчитанная по термометру Цельсия, увеличилась вдвое, а давление газа увеличилось только в 1,26 раза. Ничего удивительного, конечно, в этом нет, ибо шкала термометра Цельсия установлена условно, без всякой связи с законами расширения газа. Можно, однако, пользуясь газовыми законами, установить такую шкалу температур, что давление газа будет прямо пропорционально температуре, измеренной по этой новой шкале. Нуль в этой новой шкале называют абсолютным нулем. Это название принято потому, что, как было доказано английским физиком Кельвином (Вильямом Томсоном) (18241907), ни одно тело не может быть охлаждено ниже этой температуры. В соответствии с этим и эту новую шкалу называют шкалой абсолютных температур. Таким образом, абсолютный нуль указывает температуру, равную -273° по шкале Цельсия, и представляет собой температуру, ниже которой не может быть ни при каких условиях охлаждено ни одно тело. Температура, выражающаяся цифрой 273°+ представляет собой абсолютную температуру тела, имеющего по шкале Цельсия температуру, равную . Обычно абсолютные температуры обозначают буквой Т. Таким образом, 273о+=. Шкалу абсолютных температур часто, называют шкалой Кельвина и записывают Т° К. На основании сказанного

  • 754. Свойства жидкостей
    Другое Физика

    У жидкостей, как и газов, следует различать теплоемкость при постоянном объеме и при постоянном давлении. Разность молярных теплоемкостей равна Cp CV равна работе расширения pdV ( p молекулярное давление ) моля жидкости при его нагревании на один градус, поэтому численное значение этой разности зависит от значения коэффициента объемного теплового расширения жидкости. В отличие от идеальных газов значение Cp - CV у жидкостей не равно постоянной R, а может быть и больше и меньше в зависимости от значения коэффициента объемного расширения и от величины внутренних сил взаимодействия частиц жидкости, против которых совершается работа расширения (давление p в выражении pdV связано именно с этими силами).

  • 755. Свойства звука
    Другое Физика

    Одно из направлений Электричество из звука. На первый взгляд прибор своей мигающей лампочкой напоминает R2D2 - незабываемого робота из Звездных войн. Однако, в действительности речь идет о термоакустическом генераторе. Машина обещает быть такой же эффективной, как топливный элемент и одновременно такой же дешевой как традиционный двигатель внутреннего сгорания.в первую очередь предназначен для обеспечения домашних хозяйств водой и электричеством. Кроме того, он мог бы перерабатывать отработанное тепло солнечных коллекторов и таким образом повышать их эффективность. Компьютерные модели прибора обещают более 40% КПД. Делается ставка на термоакустическую конструкцию: в герметической камере находится газ, через который при нагревании двигаются звуковые волны. Их интенсивность зависит от энергии, попадающей в камеру. Механическую энергию выводит из камеры не поршень, а металлическая пластина. Когда гелий, находящийся под давлением, нагревается, звуковые волны в газе усиливаются и приводят к колебаниям пластины. Эти колебания через слой гелия передаются находящейся под ним металлической мембране, которая периодически нажимает на вал. Вал в свою очередь приводит в движение ротор генератора переменного тока. Благодаря такому процессу в цикле термодинамического процесса нет механического трения. Первый коммерческий прибор появится в 2012 году, и он должен при температуре 700 градусов достичь 40% КПД. При температуре в 1000 градусов КПД составит 50%.

  • 756. Свойства сплавов кремний-германий и перспективы Si1-xGex производства
    Другое Физика

     

    1. Johnson E.R., Christian S.M. Physical Rework, 95, №2, 560-561 (1954)
    2. Levitas A., Physical Rework, 99, №6, 1810-1814 (1955)
    3. Wang C.C., Alexander B.H., Acta Metall., 3, 515-516 (1955)
    4. Методическое пособие №86 МИСиС под ред. Галаева, Москва, 1994, с. 64-68
    5. Goss A.J., Benson K.E., Pfann W.G., Acta Metall., 4, №3, 332-333 (1956)
    6. Hermann G.Grimmeiss “Silicon-germanium a promise into the future?” ФТП, 33, 9, 1032-1034 (1999)
    7. Ю.В. Помозов, М.Г.Соснин, Л.И.Хируненко, В.И.Яшник, Н.В.Абросимов, В.Шрёдер, М.Хёне «Кислородсодержащие радиационные дефекты в Si1-xGex» ФТП, 34, 9, 1030-1034 (2000)
    8. А.С.Саидов, А.Кутлимранов, Б.Сапаев, У.Т.Давлатов «Спектральные и вольт-амперные характеристики Si-Si1-xGex гетероструктур, полученных методом жидкофазной эпитаксии» Письма в ЖТФ, 27, 8, 26-35 (2001)
    9. И.Г.Атабаев, Н.А.Матчанов, Э.Н.Бахранов «Низкотемпературная диффузия лития в твёрдые растворы кремний-германий» ФТТ, 43, 12, 2140-2141 (2001)
    10. Д.И.Бринкевич, В.В.Петров, В.В.Чёрный «Особенности спектров ИК-поглощения термообработанного при 450 оС кремния, легированного германием» Вестник БГУ, №3, 63-65 (1986)
    11. С.Н.Горин, Г.В.Зайцева, Т.М.Ткачёва «Рентгенотопографическое исследование микродефектов в кремнии, легированном германием» Свойства легированных полупроводниковых материалов Москва «Наука» с. 132-135 (1996)
  • 757. Свойства твердых тел
    Другое Физика

    Рукотворные драгоценности. Драгоценные камни всегда манили и привлекали к себе людей. Возникла задача «рукотворного» получения драгоценных камней. Синтез искусственного кварца основан на кристаллизации из раствора. Различные добавки позволяют получить настоящую россыпь драгоценных камней. Темно-дымчатая окраска кварца-мориона обусловлена примесью алюминия, причем готовые кристаллы подвергают рентгеновскому облучению для проявления окраски. Цвет голубого кварца (перунита) обусловлен примесями кобальта. Аметистовая окраска кварца вызывается атомами железа в необычной степени окисления + lV. Они замещают атомы кремния в кварце. При малом содержании ионов железа в кварце окраска искусственных аметистов бурая, а при высоком зеленая. Цвет зависит даже от того, каким образом распределены атомы железа в кристалле. Для проявления аметистовой окраски кристаллы облучают.

  • 758. Свойство высокоэнергетических магнитов и их применение
    Другое Физика

    %20%d0%bd%d0%b0%d1%85%d0%be%d0%b4%d0%b8%d1%82%d1%81%d1%8f%20%d0%bd%d0%b0%20%d1%80%d0%be%d1%82%d0%be%d1%80%d0%b5%20<http://ru.wikipedia.org/wiki/%D0%A0%D0%BE%D1%82%D0%BE%D1%80>%20(%d0%b2%20%d0%b2%d0%b8%d0%b4%d0%b5%20%d0%bf%d0%be%d1%81%d1%82%d0%be%d1%8f%d0%bd%d0%bd%d1%8b%d1%85%20%d0%bc%d0%b0%d0%b3%d0%bd%d0%b8%d1%82%d0%be%d0%b2%20<http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82>),%20%d1%8f%d0%ba%d0%be%d1%80%d0%bd%d0%b0%d1%8f%20%d0%be%d0%b1%d0%bc%d0%be%d1%82%d0%ba%d0%b0%20%d0%bd%d0%b0%d1%85%d0%be%d0%b4%d0%b8%d1%82%d1%81%d1%8f%20%d0%bd%d0%b0%20%d1%81%d1%82%d0%b0%d1%82%d0%be%d1%80%d0%b5%20<http://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%BE%D1%80>%20(%d1%81%d0%b8%d0%bd%d1%85%d1%80%d0%be%d0%bd%d0%bd%d1%8b%d0%b9%20%d0%b4%d0%b2%d0%b8%d0%b3%d0%b0%d1%82%d0%b5%d0%bb%d1%8c%20<http://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BD%D1%85%D1%80%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C>).%20%d0%9d%d0%b0%d0%bf%d1%80%d1%8f%d0%b6%d0%b5%d0%bd%d0%b8%d0%b5%20%d0%bf%d0%b8%d1%82%d0%b0%d0%bd%d0%b8%d1%8f%20%d0%be%d0%b1%d0%bc%d0%be%d1%82%d0%be%d0%ba%20%d0%b4%d0%b2%d0%b8%d0%b3%d0%b0%d1%82%d0%b5%d0%bb%d1%8f%20%d1%84%d0%be%d1%80%d0%bc%d0%b8%d1%80%d1%83%d0%b5%d1%82%d1%81%d1%8f%20%d0%b2%20%d0%b7%d0%b0%d0%b2%d0%b8%d1%81%d0%b8%d0%bc%d0%be%d1%81%d1%82%d0%b8%20%d0%be%d1%82%20%d0%bf%d0%be%d0%bb%d0%be%d0%b6%d0%b5%d0%bd%d0%b8%d1%8f%20%d1%80%d0%be%d1%82%d0%be%d1%80%d0%b0.%20%d0%95%d1%81%d0%bb%d0%b8%20%d0%b2%20%d0%b4%d0%b2%d0%b8%d0%b3%d0%b0%d1%82%d0%b5%d0%bb%d1%8f%d1%85%20%d0%bf%d0%be%d1%81%d1%82%d0%be%d1%8f%d0%bd%d0%bd%d0%be%d0%b3%d0%be%20%d1%82%d0%be%d0%ba%d0%b0%20%d0%b4%d0%bb%d1%8f%20%d1%8d%d1%82%d0%be%d0%b9%20%d1%86%d0%b5%d0%bb%d0%b8%20%d0%b8%d1%81%d0%bf%d0%be%d0%bb%d1%8c%d0%b7%d0%be%d0%b2%d0%b0%d0%bb%d1%81%d1%8f%20%d0%ba%d0%be%d0%bb%d0%bb%d0%b5%d0%ba%d1%82%d0%be%d1%80%20<http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BB%D0%BB%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%BE-%D1%89%D1%91%D1%82%D0%BE%D1%87%D0%BD%D1%8B%D0%B9_%D1%83%D0%B7%D0%B5%D0%BB>,%20%d1%82%d0%be%20%d0%b2%20%d0%b2%d0%b5%d0%bd%d1%82%d0%b8%d0%bb%d1%8c%d0%bd%d0%be%d0%bc%20%d0%b4%d0%b2%d0%b8%d0%b3%d0%b0%d1%82%d0%b5%d0%bb%d0%b5%20%d0%b5%d0%b3%d0%be%20%d1%84%d1%83%d0%bd%d0%ba%d1%86%d0%b8%d1%8e%20%d0%b2%d1%8b%d0%bf%d0%be%d0%bb%d0%bd%d1%8f%d0%b5%d1%82%20%d0%bf%d0%be%d0%bb%d1%83%d0%bf%d1%80%d0%be%d0%b2%d0%be%d0%b4%d0%bd%d0%b8%d0%ba%d0%be%d0%b2%d1%8b%d0%b9%20%d0%ba%d0%be%d0%bc%d0%bc%d1%83%d1%82%d0%b0%d1%82%d0%be%d1%80%20<http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BC%D1%83%D1%82%D0%B0%D1%82%D0%BE%D1%80>%20(%d0%b4%d0%b0%d1%82%d1%87%d0%b8%d0%ba%20%d0%bf%d0%be%d0%bb%d0%be%d0%b6%d0%b5%d0%bd%d0%b8%d1%8f%20%d1%80%d0%be%d1%82%d0%be%d1%80%d0%b0%20<http://ru.wikipedia.org/wiki/%D0%94%D0%B0%D1%82%D1%87%D0%B8%D0%BA_%D0%BF%D0%BE%D0%BB%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F_%D1%80%D0%BE%D1%82%D0%BE%D1%80%D0%B0>%20(%d0%94%d0%9f%d0%a0)%20%d1%81%20%d0%b8%d0%bd%d0%b2%d0%b5%d1%80%d1%82%d0%be%d1%80%d0%be%d0%bc%20<http://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B2%D0%B5%D1%80%D1%82%D0%BE%D1%80_%28%D0%BF%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%29>).">В вентильном двигателе индуктор <http://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B4%D1%83%D0%BA%D1%82%D0%BE%D1%80> находится на роторе <http://ru.wikipedia.org/wiki/%D0%A0%D0%BE%D1%82%D0%BE%D1%80> (в виде постоянных магнитов <http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D1%8B%D0%B9_%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82>), якорная обмотка находится на статоре <http://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%BE%D1%80> (синхронный двигатель <http://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BD%D1%85%D1%80%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8C>). Напряжение питания обмоток двигателя формируется в зависимости от положения ротора. Если в двигателях постоянного тока для этой цели использовался коллектор <http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BB%D0%BB%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%BE-%D1%89%D1%91%D1%82%D0%BE%D1%87%D0%BD%D1%8B%D0%B9_%D1%83%D0%B7%D0%B5%D0%BB>, то в вентильном двигателе его функцию выполняет полупроводниковый коммутатор <http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BC%D1%83%D1%82%D0%B0%D1%82%D0%BE%D1%80> (датчик положения ротора <http://ru.wikipedia.org/wiki/%D0%94%D0%B0%D1%82%D1%87%D0%B8%D0%BA_%D0%BF%D0%BE%D0%BB%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F_%D1%80%D0%BE%D1%82%D0%BE%D1%80%D0%B0> (ДПР) с инвертором <http://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B2%D0%B5%D1%80%D1%82%D0%BE%D1%80_%28%D0%BF%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%29>).

  • 759. Связанные контура
    Другое Физика
  • 760. Секреты экспериментов Николы Теслы
    Другое Физика

    Можно использовать и электрофорную машину (при ее помощи можно разделять и накапливать заряды противоположного знака) или работающий от сети электростатический генератор, играющий ту же роль. Если мы будем попеременно подавать с электростатического генератора то плюс, то минус на близко расположенный шар (можно организовать переключение с помощью 2х реле или полупроводниковых ключей), то при подключении плюса электроны будут прибегать с удаленного шарика емкости по проводу, а при подключении минуса к той же емкости-шарику электроны убегут назад. Здесь необходимо вспомнить, что когда в проводнике возникает разность потенциала, то напряженность электрического поля становится в нашем процессе величиной постоянной. Теперь, когда электронам есть куда стекать (в емкости-шары), то можно применять способ электромагнитной индукции для возбуждения переменного тока. То есть если в каком-либо месте проводника свита спираль из него же, то воздействуя попеременно динамически на нее магнитом получим тот же результат. Отсюда становится ясно, что для данной цели можно использовать и трансформатор. Ток может возникнуть и от поочередного влияния на противоположные шарики-емкости то есть с обоих концов. Чтобы создать большой потенциал шарика-емкости, через непосредственное его заряжание или методом электростатической индукции, то можно применить известный принцип генератора Ван де Граафа. При помощи такого генератора можно создавать потенциал в миллионы вольт следовательно сравнительно большое напряжение.