Информация по предмету Физика

  • 961. Формирование основных понятий вращательного движения в средней школе
    Другое Физика

    При изучении движения по окружности нуждаются в конкретизации понятия «число оборотов в единицу времени», «линейная скорость» и особенно «центростремительное ускорение», которые для учащихся весьма абстрактны. Не ограничиваясь формальным определением, полезно показать устройства с известными числами оборотов (лучше для начала с небольшими), например: электродвигатель, центробежную машину с червячной передачей (число оборотов которой определяется демонстрационным тахометром), электробытовые приборы, в первую очередь наиболее доступный из них настольный вентилятор (число оборотов вентилятора берем из таблицы). После этого можно привести аналогичные данные о машинах и приборах, применяемых в технике (например, скорость вращения пропеллера самолета и вертолета). Для ребят интересно будет узнать, что винт вертолета вращается сравнительно медленно: всего в три раза быстрее, чем диск электропроигрывателя при максимальной скорости. Электропроигрывателем, центробежной машиной и настольным вентилятором можно воспользоваться и для подсчёта линейных скоростей и центростремительных ускорений конкретных точек. Например, при наращении диска со скоростью 33 об/мин центростремительное ускорение его наиболее удаленных точек составляет около 1 м/с2, что может служить своеобразным эталоном этой величины. Точка лопасти настольного вентилятора, отстоящая от оси вращения на 10 см, Движется со скоростью 12 м/с и с центростремительным ускорением 440 м/с2.

  • 962. Формулы по физике
    Другое Физика
  • 963. Фотогальванометрический веберметр
    Другое Физика

    ного магнита. Если соеденить эту катушку с рамкой веберметра и изменить поток, сцепляющийся с витками катушки (путем поворота катушки или магнита), то рамка веберметра отклонится; регулируя положение катушки или магнита, устанавливают указатель прибора в нужное положение.

  • 964. Фотоприймачі з внутрішнім підсиленням
    Другое Физика

    Фотоелектричне інжекційне підсилення полягає в тому, що засвітка з області власного або примісного поглинання, модулюючи опір базової області, викликає додаткову зміну інжекції носіїв через p-n-перехід. Освітлення призводить до зміни опору бази як за рахунок безпосереднього збільшення концентрації носіїв (як у фоторезисторі), так і за рахунок зміни параметрів, що визначають розподіл незрівноважених носіїв у базовій області (час життя, біполярна рухливість і ін.). На відміну від звичайних фотоприймачів (оберненозміщені фотодіоди, фототранзистори), у яких використовується фотодіодний ефект-розподіл незрівноважених носіїв потенційним бар'єром, у ІФД сполучаються фоторезистивний ефект з інжекцією через прямозміщений перехід. Оскільки інжектуючий p-n-перехід включений послідовно з опором базової області, то зміна останнього призводить до зміни інжекційного струму і подальшої модуляції опору бази. У такий спосіб забезпечується підсилення початкового (первинного) фотоструму, тобто самопомноження струму. Внесок інжектованих носіїв у збільшення інтегральної провідності напівпровідника набагато перевищує внесок носіїв, збуджених світлом. У якості критерію ефективності ІФД проводять порівняння його чутливості з фоточутливістю аналогічного (еквівалентного) фоторезистора, виготовленого з того ж матеріалу, що і база діода, і що має ті ж геометричні розміри.

  • 965. Фотопроцессы, индуцированные лазерным излучением в растворах и пленках наночастиц CdSe/ZnS
    Другое Физика

     

    1. Zaharchenko K.V., Obraztcova E.A., Mochalov K.E., Artemyev M.V., Martynov I.L., Klinov D.V., Nabiev I.R., Chistyakov A.A., Oleinikov V.A. Laser induced luminescence of CdSe/ZnS nanoparticles in the solution and in condensed phase. Laser Physics, Vol. 15, No8, pp. 1050 - 1053 (2005).
    2. A.A. Chistyakov, I.L. Martynov, K.E. Mochalov, V.A.Oleinikov, S.V. Sizova, E.A. Ustinovich, K.V.Zaharchenko. Interaction of CdSe/ZnS CoreShell Semiconductor Nanocrystals in Solid Thin Films. Laser Physics, Vol. 16, No 12, pp.1 8, 2006
    3. М.В. Артемьев, К.В. Захарченко, К.Е.Мочалов, И.А. Мурадян, В.А. Олейников, А.А. Чистяков. Лазерно индуцированная люминесценция наночастиц CdSe/ZnS в растворе и конденсированной фазе. Международная конференция “Лазерная физика и применения лазеров”, тезисы докладов. Институт физики им. Б.И. Степанова, 2003, II-33у.
    4. К.В. Захарченко, Д.В. Клинов, И.Л. Мартынов, К.Е. Мочалов, В.А. Олейников, А.А. Чистяков. Лазерно индуцированная люминесценция тонких пленок наночастиц CdSe/ZnS. Конференция “Фундаментальные проблемы оптики - 2004”, сборник трудов, с. 91 С.-Пб., 2004
    5. М.В. Артемьев, К.В. Захарченко, Д.В. Клинов, И.Л. Мартынов, И.Р. Набиев, В.А. Олейников, А.А. Чистяков. Люминофоры на основе наночастиц CdSe/ZnS для задач дактилоскопии. - в сб. Материалы VII Всероссийской конференции “Физикохимия ультрадисперсных (нано-) систем”, с. 250. Москва, 2005
    6. М.В. Артемьев, С.В. Дайнеко, К.В. Захарченко, И.Л. Мартынов, В.А.Олейников, С.В. Сизова, А.А. Чистяков. Лазерно индуцированные фотопроцессы в пленках и растворах наночастиц CdSe/ZnS. Сборник трудов IV Международной конференции “Фундаментальные проблемы оптики” ФПО-2006, с. 81. С.-Пб, 2006.
    7. М.В. Артемьев, С.В. Дайнеко, К.В. Захарченко, И.Л.Мартынов, В.А.Олейников, А.А. Чистяков. Фотопроцессы в растворах и пленках наночастиц CdSe/ZnS, инициированные лазерным излучением. Лазерная физика и оптические технологии: материалы VI Международной конференции. Часть1, с. 224. Гродно: ГрГУ, 2006.
    8. М.В. Артемьев, К.В. Захарченко, Д.В. Клинов, И.Л. Мартынов, И.Р. Набиев, В.А. Олейников, А.А. Чистяков. Исследование конденсатов наночастиц CdSe/ZnS оптическими методами. - в сб. трудов VII Всероссийской конференции “Физикохимия ультрадисперсных (нано-) систем”, с. 136. Москва, 2006
    9. К.В. Захарченко, В.А. Караванский, К.Е. Мочалов, В.А. Олейников, А.А. Чистяков, Л.Я. Краснобаев. Фотофизические свойства полупроводниковых наночастиц и нанокомпозитов. Научная сессия МИФИ-2004, сборник трудов, том 3, с. 192. Москва, 2004.
    10. М.В. Артемьев, К.В. Захарченко, Д.В. Клинов, И.Л. Мартынов, К.Е. Мочалов, И.Р. Набиев, Е.А. Образцова, В.А. Олейников, А.А. Чистяков. О возможности фазовых переходов в конденсатах наночастиц CdSe/ZnS. Научная сессия МИФИ-2005, сборник трудов, том 4, с. 193. Москва, 2005.
    11. М.В. Артемьев, С.В. Дайнеко, К.В. Захарченко, Д.В. Клинов, И.Л.Мартынов, К.Е. Мочалов, И.Р. Набиев, В.А. Олейников, А.А. Чистяков. Исследование тонких пленок наночастиц CdSe/ZnS оптическими методами. - Научная сессия МИФИ-2006, сборник научных трудов, том 4, с. 201. Москва, 2006.
  • 966. Фотореле управления и защиты
    Другое Физика

    Начатое с 1927 года производство машинных АТС потребовало на заводе коренных инженерно-производственных изменений. Были закуплены новые станки, расширены конструкторские и технологические группы технического отдела, организовано сборочно-монтажное конвейерное производство. В инструментальном цехе производство реле было выделено в самостоятельный участок, где уже наряду с реле постоянного тока выпускаются реле переменного тока с утяжеленным якорем и первые тепловые реле на термобиметаллах. В довоенное время завод "Красная заря" являлся, по сути, единственным отечественным заводом, разрабатывающим и производящим электромагнитные реле. Так, например, во время войны в Уфе было разработано специальное реле для авиационной аппаратуры, а расчеты М.И. Витенберга по подбору оптимальной длины сердечника позволили в производстве реле переменного тока отказаться от импортной кремниевой стали, используя обычную отечественную.

  • 967. Фотоэлектронная эмиссия
    Другое Физика

    (3,1эв 5,63 ) широкое распространение имеет ртутная кварцевая лампа, излучающая линейчатый спектр, содержащий большое количество спектральных линий. В области вакуумного ультрафиолета (6,2эв12,3эв) , как правило, используется искровой разряд.(это область спектра получило свое название в связи с тем, что излучение этих волн сильно поглощается в воздухе. Поэтому работать с этими излучениями этих длин волн можно лишь в аппаратуре, в которой давление воздуха меньше 10 -4-10 -5тор.) Монохроматизация излучение длин волн, больших 1200, может быть осуществлена с помощью призменных спекртографов. При этом в качестве оптических материалов в видимой части спектра используется обычно стекло, в области ближайщего ультрафиолета до кварц. Могут применятся и другие материалы, например, кристалы NaCl.В интервале длин волн используются кристалы LiF. Излучение с более короткими длинами волн поглощается любыми известными оптическими материалами. Поэтому проведение исследований в коротковолновой области вакуумного ультрафиолета требует использования спектрографов с отражающими диспергирующими системами, например, с вогнутой дифракционной решеткой. Измерение интенсивностей потоков излучения обычно осуществляется с помощью специально калиброванных термопар, термостолбиков и фотоумножителей. В ряде случаев абсолютные значения фототоков при использующихся интенсивностях излучения малы и их измерение требует применения высокочувствительных измерителей тока. В ряде случаев абсолютные значения фототоков при используюшихся интенсивностях излучения малы и их измерение требует применения высокочувствительных измерителей тока . Рассмотрим результаты экпериментальных исследований спектральных характеристик фотокатодов из массивных металлов .Для щелочных , а также некоторых щелочноземельных металлов красная граница лежит в видемой части спектра ; для подавляющего же большинства металов она находиться в ультрофеолетовой области .Более детальные исследования фотоэффекта с различных металлов показали,однако, что при T >0 резкой красной границы не существует.В действительности фототок в области , близких к , асимптотически приближается к нулю и определение из эксперементальной зависимости , стого говоря, выполнено быть не может. Лишь специальная математическая обработка экспериментальных данных позволяет найти . Отсутсвие резкой красной границы при Т > 0 легко понять,если учесть распределение по энергиям электронов внутри твердого тела.Пренебрежение величиной ,.сделанное выше,является точным лишь при Т=0 .При Т > 0 величина может быть больше нуля. Это приведет, во-первых, к фотоэффекту электронов с уровней энергии E > , который может происходить и при , а во-вторых, к наличию в фотоэмиссии электронов с кинетьическими энергиями,большими, чем.. Однако число электронов в металле с энергиями мало. Поэтому и вероятность фотоэлектрического поглощения при мала,и фототок также мал.При для всех металлов их квантовый выход возрастает при увеличении ; около красной границы рост фототока определяется зависимостью

  • 968. Фотоэффект
    Другое Физика

    В теории Эйнштейна законы фотоэффекта объясняются следующим образом:

    1. Интенсивность света пропорциональна числу фотонов в световом пучке и поэтому определяет число электронов, вырванных из металла.
    2. Второй закон следует из уравнения: mv 2 /2=hv-A.
    3. Из этого же уравнения следует, что фотоэффект возможен лишь в том случае, когда энергия поглощённого фотона превышает работу выхода электрона из металла. Т. е. частота света при этом должна превышать некоторое определённое для каждого вещества значение, равное A>h. Эта минимальная частота определяет красную границу фотоэффекта:
  • 969. Фотоэффект
    Другое Физика
  • 970. Фотоэффект и его применение
    Другое Физика

    В 1899 г. немец Филипп Ленард и англичанин Джозеф Томсон доказали, что падающий на металлическую поверхность свет выбивает из неё электроны, движение которых и приводит к появлению фототока. Однако понять природу фотоэффекта с помощью классической электродинамики так и не удалось. Необъяснимым оставалось, почему фототок возникал лишь тогда, когда частота падающего света превышала строго определённую для каждого металла величину. Только в 1905 г. Эйнштейн превратил эту загадку в совершенно прозрачную картину. Он предположил, что электромагнитное излучение не просто испускается порциями - оно и распространяется в пространстве, и поглощается веществом тоже в виде порций - световых квантов (фотонов). Поэтому для возникновения фотоэффекта важна отнюдь не интенсивность падающего светового пучка. Главное, хватает ли отдельному световому кванту энергии, чтобы выбить электрон из вещества. Минимальную энергию, необходимую для этого, называют работой выхода А. В итоге Эйнштейн вывел уравнение фотоэффекта. Ясно, что фотоэффект может вызывать только световая волна достаточно высокой частоты, а сила фототока пропорциональна интенсивности поглощённого света, то есть числу фотонов, способных выбить электроны из вещества. В 1907 г. Эйнштейн сделал ещё одно уточнение квантовой гипотезы. Почему тело излучает свет только порциями? А потому, отвечал Эйнштейн, что атомы имеют лишь дискретный набор значений энергии. Таким образом, теория излучения и поглощения приняла законченный вид. В 1922 г. американец Артур Комптон обнаружил, что длинна волны рентгеновского излучения изменяется при рассеянии на электронах вещества. Но, по классической электродинамике, длина световой волны при рассеянии меняться не может! Тогда Комптон выполнил расчёт, предположив, что на электронах рассеиваются не волны, а частицы (фотоны). Результат совпал с экспериментальным. Это стало прямым доказательством реальности существования фотонов.

  • 971. Французскі фізік Андрэ Мары Ампер
    Другое Физика

    Мінула без малога дзвесце гадоў з таго моманту, калі Ампер выступіў з гэтай гіпотэзай, і, здавалася бы, сітавіна разабрацца, ці быў ён мае рацыю (і тады назоў "гіпотэза" робіцца недарэчным), або жа ад яе трэба адмовіцца. Першае ўражанне: гіпотэзе Ампера супярэчыць нават сам факт існавання сталых магнітаў: бо ніякіх токаў, адказных за ўзнікненне магнетызму, тут, накшталт бы, не! Ампер пярэчыць: магнетызм спараджаецца велізарным лікам малюсенькіх электрычных атамных контураў току (можна толькі дзівіцца, што такая найглыбокая ідэя магла з'явіцца ў тую сітавіну, калі не толькі яшчэ не ведалі нічога аб прыладзе атамаў, але нават яшчэ не існавала і слова "электрон"!) Кожны такі контур выступае як "магнітны лісток" - элементарны магнітны двухполюснік. Гэтым і тлумачыцца, чаму магнітныя зарады аднаго знака - "магнітныя монополи", у адрозненне ад манапалей электрычных, у прыродзе не сустракаюцца.

  • 972. Фундаментальные законы природы и теплоэнергетика
    Другое Физика
  • 973. Фундаментальные законы физики и теория асимметрии пространства
    Другое Физика

    Эти законы, установленные, в основном, трудами Фарадея и Максвелла, утверждают, что ускоренно движущийся заряд излучает электромагнитные волны и поэтому теряет энергию. Электрон в атоме Резерфорда движется ускоренно в кулоновском поле ядра и, как показывает теория Максвелла, должен был бы, потеряв примерно за десятимиллионную долю секунды всю энергию, упасть на ядро. Это называется проблемой радиационной неустойчивости резерфордовской модели атома, и Резерфорд ее отчетливо понимал… Планетарная модель атома тем временем все больше занимала его мысли. И вот в марте 1912 начинается дружба и сотрудничество Резерфорда с Нильсом Бором. Бор внес в планетарную модель Резерфорда принципиально новые черты идею квантов. Эта идея возникла еще в начале века благодаря работам Макса Планка, понявшего, что для объяснения законов теплового излучения нужно допустить, что энергия уносится дискретными порциями квантами. Идея дискретности была органически чужда всей классической физике, в частности, теории электромагнитных волн, но вскоре Альберт Эйнштейн, а затем и Артур Комптон показали, что эта квантовость проявляется и при поглощении, и при рассеянии.

  • 974. Фундаментальные понятия о материи
    Другое Физика

    В то время как заряд ядра равен сумме зарядов входящих в него протонов, масса ядра не равна сумме масс отдельных свободных протонов и нейтронов (нуклонов), она несколько меньше ее. Это объясняется тем, что для связи нуклонов в ядре (для организации сильного взаимодействия) требуется энергия связи E. Каждый нуклон (и протон и нейтрон), попадая в ядро, образно говоря, выделяет часть своей массы для формирования внутриядерного сильного взаимодействия, которое «склеивает» нуклоны в ядре. При этом, согласно теории относительности (см. главу 3), между энергией E и массой m существует соотношение E = mc2,где с скорость света в вакууме. Так что формирование энергии связи нуклонов в ядре Eсв приводит к уменьшению массы ядра на так называемый дефект массы?m = Eсв · c2. Эти представления подтверждены многочисленными экспериментами. Построив зависимость энергии связи на один нуклон E св/ A =? от числа нуклонов в ядре A, мы сразу увидим нелинейный характер этой зависимости. Удельная энергия связи ? с ростом A сначала круто возрастает (у легких ядер), затем характеристика приближается к горизонтальной (у средних ядер), а далее медленно снижается (у тяжелых ядер). У урана? ?7,5 МэВ, а у средних ядер ? ? 8,5 МэВ. Средние ядра наиболее устойчивы, у них большая энергия связи. Отсюда открывается возможность получения энергии при делении тяжелого ядра на два более легких (средних). Такая ядерная реакция деления может осуществиться при бомбардировке ядра урана свободным нейтроном. Например, 23592U делится на два новых ядра: рубидий37-94Rb и цезий 14055Cs (один из вариантов деления урана). Реакция деления тяжелого ядра замечательна тем, что помимо новых более легких ядер появляются два новых свободных нейтрона, которые называют вторичными. При этом на каждый акт деления приходится 200 МэВ выделяющейся энергии. Она выделяется в виде кинетической энергии всех продуктов деления и далее может быть использована, например, для нагревания воды или другого теплоносителя. Вторичные нейтроны в свою очередь могут вызвать деление других ядер урана. Образуется цепная реакция, в результате которой в размножающей среде может выделиться огромная энергия. Этот способ получения энергии широко используется в ядерных боеприпасах и управляемых ядерных энергетических установках на электростанциях и на транспортных объектах с атомной энергетикой.

  • 975. Функция распределения электронов
    Другое Физика

    После такого формального введения уравнения Лиувилля мы должны дать физическую интерпретацию понятия ансамбля. Среди авторов, обсуждавших эту проблему в литературе, до сих пор имеются некоторые разногласия, в особенности эти разногласия касаются известной эргодической теоремы [2]. Мы не хотим здесь вдаваться в подробности этой весьма бесплодной дискуссии, тем более что недавно были высказаны некоторые сомнения в применимости этой теоремы к реальным физическим системам [З]. Мы будем считать, что для макроскопического наблюдателя невозможно по одному измерению получить сведения о системе, первоначальное состояние которой определено «макроскопически» (мы ниже вернемся еще к понятию «макроскопическое определение»). Единственное, что можно предсказать, это средний результат на основе большого числа измерений, полученных для одной и той же макроскопической системы. Предположим, что это среднее значение имеет вес, равный функции распределения fN . Эта функция для момента времени t=0 должна быть построена так, чтобы она согласовывалась с имеющейся макроскопической информацией о системе. Однако вследствие большого числа частиц в системе результат любого измерения будет очень близок к среднему значению измеряемой величины для ансамбля (ошибка приблизительно порядка N-1). Последнее утверждение никогда не доказывается, но является вполне естественным.

  • 976. Ханс Христиан Эрстед (1777–1851гг.)
    Другое Физика

    Ханс, или Ганс Христиан Эрстед 17771851 датский учёный, физик, исследователь электромагнетизма. Родился 14 августа 1777 г. в маленьком городке Рудкебинге, расположенном на датском острове Лангеланд. Его отец был аптекарем, денег в семье не водилось. Начальное образование братьям Хансу Христиану и Андерсу пришлось получать где придётся: городской парикмахер учил их немецкому; его жена датскому; пастор маленькой церквушки научил их правилам грамматики, познакомил с историей и литературой; землемер научил сложению и вычитанию, а заезжий студент впервые рассказал им о свойствах минералов. Университет в столице Дании Копенгагене был основан ещё в 1478 г., но общеобразовательная культура его весьма низка. Достаточно сказать, что с начала XVIII века кафедра физики в нём была ликвидирована с той целью, чтобы усилить курс богословия. В 1794 г. (17 лет) Эрстед в качестве абитуриента выезжает в Копенгаген и целый год готовится к экзаменам, которые затем успешно выдерживает. Во время учёбы Эрстед занимается практически всеми возможными дисциплинами. Золотая медаль университета была присуждена ему за эссе «Границы поэзии и прозы». Он разбрасывался и, казалось, заранее ставил крест на своей научной карьере, предпочитая разносторонность профессионализму. Следующая его работа, также высоко оценённая, была посвящена свойствам щелочей, а блестяще защищённая диссертация, за которую он в 1798 г. получил степень доктора философии, была посвящена медицине По другой версии, звание доктора философии он получил за свой первый опубликованный труд «Метафизические основы естествознания Канта»: якобы эта работа в расширенном варианте принесла автору степень доктора философии. По окончании 3-хлетнего обучения в университете Эрстед получает звание фармацевта высшей ступени. Впрочем, слово «высший» ни о чём не говорит. Физику и химию, эти фундаментальные для естествоиспытателя науки, преподавал в университете по совместительству медицины. Выпускник-фармацевт устраивается временным управляющим одной из модных столичных аптек, но сильное желание преподавательской деятельности приводит его к должности адъюнкта (лицо, занимающее младшую ученую должность в академиях и в вузах; помощник академика или профессора.) при университете. Ему поручается чтение двух лекций в неделю без оплаты труда. Следовательно, он должен был продолжать работать в аптеке. Эта работа хоть и отвлекала от науки, но позволяла использовать оборудование аптеки в качестве исследовательской лаборатории. Три года преподавания в университете не проходят даром. Старательный адъюнкт был замечен начальством и отправлен в заграничную командировку для повышения научной квалификации (в некоторых источниках указывается, что в командировку он едет сразу же после окончания обучения) Однако практически везде указывается, что в Данию он возвращается в 1804 году, следовательно, получается, что он путешествует по Европе более пяти лет, что неправдоподобно вряд ли у университета были деньги и желание оплачивать столь длительную поездку. В данном случае я больше склонна доверять БСЭ, где указано, что Эрстед стал адъюнктом в 1800 году). Сначала Германия, где произошла встреча командированного учёного с человеком, талант и ум которого оказал глубокое влияние на его научные интересы. Речь идёт о «гениальном фантазёре» и сумасброде, неординарном физике и химике Иоганне Вильгельме Риттере, принципиальном стороннике натурфилософии Шеллинга, идеи которой заключались в том, что будто бы все силы в природе возникают из одних и тех же источников. Эти положения и заинтересовали Эрстеда. Вот что он писал: «Моё твёрдое убеждение, что великое фундаментальное единство пронизывает природу. После того как мы убедились в этом, вдвойне необходимо обратить наше внимание на мир разнообразия, где эта истина найдёт своё единственное подтверждение. Если мы не сделаем этого, единство само по себе становится бесплодным и пустым рассуждением, ведущим к неправильным взглядам».Затем Париж, где он слушает лекции учёных первой величины физика Шарля, химика Бертолле, естествоиспытателя Кювье. Большое впечатление на молодого учёного производят студенческие лаборатории Парижской политехнической школы ведь в родной Дании таких нет. И вот его вывод: «Сухие лекции без опытов, какие читают в Берлине, не нравятся мне. Все успехи науки должны начинаться с экспериментов».В 1804 г. Эрстед возвращается в Данию. Но с работой в университете у него не все было ладно. Он не мог рассчитывать на государственную оплачиваемую должность. Однако после того как Эрстеду было поручено ведать коллекцией физических и химических приборов, принадлежащих королю (встречается также утверждение, что король подарит университету Копенгагена эту коллекцию в 1815 году; впрочем, одно другому не противоречит), он решается читать частные лекции по физике и химии. «Мои лекции по химии, писал начинающий лектор, привлекают столько слушателей, что не все могут поместиться в аудитории». Именно этими лекциями Эрстед доказал администрации университета своё право на оплачиваемую штатную должность. В 1806 г. он становится экстраординарным профессором физики, в функции которого входила обязанность экзаменовать кандидатов по философии, а также преподавать физику и химию студентам-медикам и фармацевтам. «Отныне, писал уже штатный профессор, я получил привилегию основать физическую школу в Дании, для которой я надеюсь найти среди молодых студентов много талантливых людей». После этого назначения физика была признана полноправной дисциплиной в Копенгагенском университете. И через сто лет один из воспитанников этого университета Нильс Бор (18551962) станет одним из создателей современной физики. В 1812 Эрстед снова выезжает за границу в Берлин и Париж. И там он пишет работу «Исследование идентичности электрических и химических сил». Эта работа свидетельствует о том, что автор продолжает руководствоваться своей философской концепцией. С 1815г. Эрстед непременный секретарь Датского королевского общества. Собственно, история открытия, совершенного зимой 18191820 учебного года (в одних источниках 15 февраля, в других ещё в декабре) включает в себя два варианта событий, но обо всём по порядку: Эрстед на лекции в университете демонстрировал нагрев проволоки электричеством от вольтова столба, для чего составил электрическую, или, как тогда говорили, гальваническую цепь. На демонстрационном столе находился морской компас, поверх стеклянной крышки, которого проходил один из проводов. Вдруг кто-то из студентов (здесь показания свидетелей расходятся говорят, это был аспирант, а то и вовсе университетский швейцар) случайно заметил, что когда Эрстед замкнул цепь, магнитная стрелка компаса отклонилась в сторону. Однако существует мнение, что Эрстед заметил отклонение стрелки сам. В пользу стороннего наблюдателя говорит то, что, во-первых, сам Эрстед был занят манипуляциями скручивания проводов, да и к тому же вряд ли бы он, сотни раз проводивший такой опыт, стал живо интересоваться его ходом. Однако предыдущие исследования Эрстеда и его увлечённость концепцией Шеллинга говорят об обратном. В некоторых источниках даже указывается, что Эрстед якобы всюду носил с собой магнит, чтобы непрерывно думать о связи магнетизма и электричества. Это представляется мне ложью, призванной упрочить позицию Эрстеда как первооткрывателя. В самом деле, если был так озабочен проблемой, почему не попытался раньше целенаправленно поставить опыт с электрической цепью и компасом? Ведь компас одно из наиболее очевидных практических использований магнита. Тем не менее, нельзя отрицать, что над проблемой связи электричества и магнетизма он задумывался, как впрочем, и над проблемами связи других явлений, между которыми никакой связи не было (напомню, он был приверженцем концепции Шеллинга). Так или иначе, открытие было сделано.Для начала Эрстед повторил условия своего лекционного опыта, а затем стал их менять. И вот что обнаружилось. «Если расстояние от проволоки до стрелки не превосходит 3/4 дюйма, отклонение составляет 450. Если расстояние увеличивать, то угол пропорционально уменьшается. Абсолютная величина отклонения изменяется в зависимости от мощности аппарата». (Используя данное сообщение, А.М. Ампер вскоре предложит на его принципе магнитоэлектрический гальванометр, роль которого в развитии электрической науки трудно преувеличить.)Дальше начались вообще чудеса. Экспериментатор решает проверить действие проводников из различных металлов на стрелку. Для этого берутся проволоки из платины, золота, серебра, латуни, свинца, железа. И о чудо! Металлы, которые никогда не обнаруживали магнитных свойств, становились как бы магнитными, когда через них протекал электрический ток. Эрстед стал экранировать стрелку от провода стеклом, деревом, смолой, гончарной глиной, камнями, диском электрофора. Экранирование не состоялось. Стрелка упорно отклонялась. Отклонялась даже тогда, когда её поместили в сосуд с водой. Последовал вывод: «Такая передача действия сквозь различные вещества не наблюдалась у обычного электричества и электричества вольтаического».Когда соединительную проволоку Эрстед ставил вертикально, то магнитная стрелка совсем не указывала на неё, а располагалась как бы по диаметру окружности с центром по оси проволоки. Исследователь предложил считать действие проволоки с током ВИХРЕВЫМ, так как именно вихрям свойственно действовать в противоположных направлениях на двух концах одного диаметра. Уже в июне 1820 Эрстед печатает на латинском языке небольшую, всего 4 страницы, работу под заголовком: «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку». В ней учёный пишет резюме: «Основной вывод из этих опытов состоит в том, что магнитная стрелка отклоняется от своего положения равновесия под действием вольтаического аппарата и что этот эффект проявляется, когда контур замкнут, и он не проявляется, когда контур разомкнут. Именно потому, что контур оставался разомкнутым, не увенчались успехом попытки такого же рода, сделанные несколько лет тому назад известными физиками». В этой же работе он пытается выработать правило, с помощью которого можно было бы заранее определить направление магнитного действия сил, возникающих в проводнике при прохождении по нему электрического тока. Вот это правило: «Полюс, который видит отрицательное электричество входящим над собой, отклоняется к западу, а полюс, который видит его входящим под собой, отклоняется к востоку». Опыты Эрстеда ставили науку в затруднительное положение. Из экспериментов следовало, что сила, действующая между магнитным полюсом и током в проводнике, направлена не по соединяющей их прямой, а по нормали к этой прямой, т.е. перпендикулярно. Этот факт подвергал сомнению всю ньютонианскую систему построения мира. Это почувствовали переводчики, переводившие на французский, итальянский, немецкий и английский языки латинский текст датского учёного. Зачастую, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечаниях латинский оригинал. После своего открытия Эрстед стал всемирно признанным учёным. Он был избран членом многих наиболее авторитетных научных обществ: Лондонского Королевского общества и Парижской Академии. Англичане присудили ему медаль за научные достижения, а из Франции он получил премию в 3000 золотых франков, когда-то назначенную Наполеоном для авторов самых крупных открытий в области электричества. Однако он не стал почивать на лаврах и продолжил заниматься наукой в 182223 независимо от Ж.Фурье открыл термоэлектрический эффект и создал первый термоэлемент. Изучал сжимаемость и упругость жидкостей и газов, изобрёл пьезометр (устройство, служащее для измерения изменения объёма веществ под воздействием гидростатического давления), пытался обнаружить электрические эффекты под действием звука. Занимался также молекулярной физикой, в частности, изучал отклонения от закона Мариотта. Эрстед обладал не только научным, но и педагогическим талантом, вёл просветительскую деятельность: в 1824 создал Общество по распространению естествознания, в 1829 стал директором организованной по его инициативе Политехнической школы в Копенгагене. Умер Эрстед в Копенгагене 9 марта 1851. Его хоронили как национального героя.

  • 977. Хаос
    Другое Физика

    Современная космология рассматривает в качестве одного из наиболее вероятных сценариев эволюции Вселенной, в рамках которого удается решить большинство космологических проблем, сценарий, включающий инфляционную стадию. Основная идея инфляционной теории состоит в том, что расширение Вселенной и весь последующий ход ее эволюции рассматривается из состояния, когда вся материя была представлена только физическим вакуумом. Однако в физической теории «вакуум» уже давно перестал быть «пустотой», «ничем». Вакуум это «Нечто», хотя и по имени «Ничто». ( Vacuum в переводе с латинского означает пустота). В вакууме ничего нет только в среднем. В действительности в нем постоянно происходят процессы рождения и уничтожения всевозможных частиц, квантов полей. Вакуум нашей Вселенной обладает вполне конкретными свойствами, определившими характер взаимодействий, специфику явлений, протекающих в нашем мире. Возможно, наша Вселенная это лишь мини-Вселенная, обитаемый островок, на котором возникла жизнь нашего типа. Инфляция (от латинского слова inflatio) означает вздутие. Инфляционная стадия предполагает процесс вздутия Вселенной. При этом вакуум той эпохи Вселенной «ложный вакуум». Он отличается от истинного вакуума (считается, что истинный вакуум это состояние с наинизшей энергией) тем, что обладает огромной энергией. Квантовая природа наделяет «ложный» вакуум стремлением к гравитационному отталкиванию, обеспечивающему его раздувание. Этот «ложный» вакуум представляет собой симметричное, но энергетически невыгодное, нестабильное состояние, что на языке физики означает стремление его к распаду. Эволюция Вселенной предстает в контексте инфляционной теории как синергетический самоорганизующийся процесс. Если встать на точку зрения модели Вселенной как замкнутой системы, то процессы самоорганизации могут быть рассмотрены в ней как взаимодействие двух открытых подсистем физического вакуума и всевозможных микрочастиц и квантов полей. Считается, что в процессе расширения из вакуумного суперсимметричного состояния Вселенная разогрелась до Большого взрыва. Дальнейший ход ее истории пролегал через критические точки точки бифуркации, в которых происходили нарушения симметрии исходного вакуума. В эти моменты энергия из вакуума перекачивалась в энергию тех частиц и полей, которые из вакуума же и рождались. Причем ход этой эволюции, выбор путей дальнейшего развития в моменты бифуркаций оказался таким, что в результате появилась жизнь нашего типа.

  • 978. Хаос, необратимость времени и брюссельская интерпретация квантовой механики
    Другое Физика

    В терминах функций распределения это можно выразить так: проинтегрируем по координатам функцию (q1, ..., qn, ..., p1, ..., pn,, t). Получим в результате функцию 0(p1, ..., pn,, t), зависящую только от импульсов. В ней не содержится никакой информации о положении частиц в пространстве, поэтому её можно назвать вакуумом корреляций. Можно также определить функцию, содержащую информацию о положении одной i-й частицы, функцию 2(qi.,qj,, p1, ..., pn,, t), описывающую две частицы и т.д. Функция 2 содержит уже информацию о парных столкновениях, 3 о тройных, ... В результате, мы можем разложить на вакуум корреляций 0 и на состояния корреляций. Отличие в квантовой механике, как обычно, связано с числом независимых переменных. Матрице плотности соответствует матричное представление например, в терминах импульсов (p1,...,pn,p1',...,pn'). Мы имеем диагональные элементы с p1=p1', p2=p2',... и недиагональные, у которых по крайней мере одно из этих соотношений нарушено. В квантовой механике вакууму корреляций 0 соответствует диагональным элементам матрицы , а недиагональным элементам, в которых переменных p1, p2, ..., p не равны соответственно p1', p2', ..., p'. В результате взаимодействий различные состояния корреляций переходят друг в друга. (С точки зрения операторного формализма на матрицы pi действует супероператор Лиувилля см. ниже). Когда частица, уже коррелированная с другой частицей, сталкивается с третьей, возникает тройная корреляция, и т.д.

  • 979. Харакатхо
    Другое Физика

    m/c? род/сМ, H.M кг.м2б, кг.м2t1t2t3t4t5(ri)(ri)

    1. Дастгохро ба шабакаи шахри васлу тугмаи СЕТЬ ро пахш намоедва санчед, ки чарогакхои датчикхои фотоэлктри фурузон бошад.
    2. Як нуги расмонро ба диски радиусаш хурд (r/1) андармон карда, нуги дигари платформа овезонбударо аз гаргараи 8 гузаронед ва руяи поёнии платформаро мувофики нишонаи танаи датчики фотоэлектри болои (2) чойгир созед.
    3. Тугмаи ПУСК-ро рахо (озод) ва тугмаи СБРОС-ро пахш карда санчед, ки дар индикатори миллисоничсанч ададхои якхелаи сифр (нуль) пайдо шаванд ва система аз харакат бозмонд. Аз руйи шкалаи сутунпоя ва нишонаи кронштейнт 4 баландии платформа h ро муайян карда дар чадвали 1 ба кайд гиред/
    4. Тугмаи ПУСК ро карда, аз руйи индикатори миллисониясанч баъди аз харакат бозмондаи плаформа тули вантро ва кайд гиред. Тачрибаро камаш 5 маротиба барои хамон як массаи платформа борчахо, ки чи кадар буданашроустод тавсия медихад, такроран гузаронед ва натичахоро дар чадвали 1 гирд оваред.
    5. Кимати миёнаи вакти афтиш:
  • 980. Характеристика электроэнергетики Тюменской области
    Другое Физика

    Рассматривая вопросы функционирования инженерных систем области, особое внимание следует уделить организации контроля за надежным и бесперебойным обеспечением потребителей области электроэнергией и иными ресурсами. Во исполнение постановления Правительства РФ №86 от 16 февраля 2008 года «О штабах по обеспечению безопасности электроснабжения», распоряжением Губернатора создан Штаб по обеспечению безопасности электроснабжения в Тюменской области. Утвержден состав Штаба, который включает в себя представителей Правительства области, надзорных органов, МЧС, сетевых, генерирующих компаний, а также предприятий жилищно-коммунального комплекса и газораспределительных организаций. В рамках заседаний Штаба, рассматриваются вопросы, и ведется совместная работа с организациями коммунального комплекса и субъектами электроэнергетики по следующим основным направлениям:

    1. координация действий всех субъектов электроэнергетики в период проведения летней ремонтной кампании и подготовки к ОЗП.
    2. совместное оперативное реагирование в целях устранения последствий возможных аварийных ситуаций, которые могут привести к ограничениям поставки электрической энергии и коммунальных ресурсов
    3. контроль за реализацией мероприятий по развитию объектов электроэнергетики, предусмотренных «Генеральной схемой размещения объектов электроэнергетики до 2020 года», а также соглашениями, подписанными между органами государственной власти и энергоресурсоснабжающими компаниями;
    4. реализация инвестиционных программ энерго- и ресурсоснабжающих организаций за счет взимания платы за технологическое присоединение к инженерным сетям и инвестиционной составляющей в тарифах.