Физика

  • 841. Источники искусственного освещения
    Информация пополнение в коллекции 12.01.2009

    И это совершенно не удивительно, если принять во внимание чудесную сущность оптоволоконной технологии освещения, позволяющей управляться со светом, как с джином из бутылки: загнать его внутрь гибкого световода, провести сквозь стены, через землю и воду, огибая углы и обходя препятствия, а когда необходимо извлечь в нужных количествах и использовать по назначению. Помогает «повелевать» светом физическое явление многократного полного внутреннего отражения. Конструктивной основой гибких волоконных световодов являются стеклянные оптические волокна, которые выпускаются со специальными добавками, обеспечивающими их стойкость к поражению грибками, плесенью и водорослями, а также с добавками против вредного воздействия ультрафиолетового излучения. Волокно состоит из сердцевины, выполненной из мягкого материала, и более твёрдой оболочки. Разные материалы по-разному преломляют свет, что и заставляет работать физику полного внутреннего отражения: сердцевина должна иметь больший показатель преломления, чем оболочка. Стеклянное оптоволокно давно применяется в телекоммуникации для передачи данных с высокой скоростью. Большие надежды возлагаются сейчас на полимерные волокна (POF plastic optic fiber), которые примерно вдвое дешевле стеклянных. Пластик не подходит для создания высокоскоростных линий передачи данных, но вполне пригоден для расстояний порядка нескольких десятков метров. Поэтому предполагается, что полимерное оптоволокно станет основой для очередной революции в домашних сетях создания интеллектуального дома нового поколения. Сеть на основе POF объединит все управляющие и обслуживающие системы дома с мультимедийными хранилищами аудиовизуальной и любой другой информации. В случае успеха такого проекта цена на полимерное оптоволокно, естественно, упадёт, что приведёт, помимо прочего, к ухудшению систем оптоволоконного освещения, главным недостатком которых является пока относительно высокая стоимость. Впрочем, это будущее, а настоящим следует признать тот факт, что уже сегодня пластиковое волокно широко применяется в освещении, оставив стекло далеко позади по объёмам продаж.

  • 842. Источники оптического излучения
    Информация пополнение в коллекции 15.11.2010

    Начиная с 30-х гг.20 в. получают распространение газоразрядные источники света, в которых используется излучение электрического разряда в инертных газах или в парах различных металлов, особенно ртути. По принципу действия они относятся к люминесцентным источниками света или источниками смешанного излучения, т.е. люминесценции и теплового. Благодаря более высокому кпд излучения и большему разнообразию спектра и других характеристик, чем у ламп накаливания, они находят применение для освещения, сигнализации, рекламы и других целей. Особенно широко для освещения применяются люминесцентные лампы, в которых ультрафиолетовое излучение ртутного разряда с помощью люминофоров преобразуется в видимое; светоотдача современных люминесцентных ламп белого света до 80-85 лм/вт. В так называемых электролюминесцентных панелях люминесценция порошкообразных люминофоров, находящихся в среде диэлектрика, возникает под действием переменного электрического поля. По эффективности они близки к лампам накаливания и применяются главным образом как световые индикаторы, табло, декоративные элементы и т.д. В полупроводниковых источников света. Люминесценция возникает при прохождении тока. Арсенид галлия, например, даёт инфракрасное излучение, фосфид галлия и карбид кремния - видимое и т.д. Эти источники света применяются для специальных целей; кпд их пока невелик. Совершенно новый тип источников света представляют собой лазеры, которые дают когерентные световые пучки высоких интенсивностей, исключительной однородности по частоте и острой направленности.

  • 843. Источники оптического излучения
    Информация пополнение в коллекции 11.06.2011
  • 844. Источники электропитания электронных устройств
    Контрольная работа пополнение в коллекции 04.12.2009

    За счет положительной обратной связи в схеме начнется регенеративный процесс. Ток коллектора iK закрывающегося транзистора Tt будет уменьшаться. За счет этого будет более отрицательным потенциал коллектора Ti. Небольшой отрицательный скачок напряжения на коллекторе транзистора Tt через резистор обратной связи Rt приложится к базе транзистора Т2 и приоткроет его. Это вызовет значительное увеличение тока коллектора iK2 транзистора Т2 за счет большого коэффициента усиления по току в схеме с ОЭ (H2i3 ~ P) Потенциал коллектора транзистора Т2, равный ц>К2=ик2=Ек +RKiK2, станет положительнее, и положительный скачок напряжения на коллекторе Т2 будет значительно больше вызвавшего его отрицательного скачка напряжения на коллекторе транзистора Ti. Усиленный положительный скачок напряжения через резистор обратной связи R2 приложится к базе транзистора Ti и еще более призакроет его и т.д. Процесс будет развиваться лавинообразно и закончится закрыванием открытого транзистора Ti и открыванием закрытого транзистора Т2. Чтобы вывести схему из этого устойчивого состояния, нужно подать запускающий импульс на базу открытого теперь транзистора Т2.

  • 845. Источники электроэнергии
    Информация пополнение в коллекции 12.01.2009

    атомная ЭЛЕКТРОСТАНЦИЯ (АЭС), электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию, В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основе 233U, 235U, 239Pu) При делении 1 г изотопов урана или плутония высвобождается 22 500 квт ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического, топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, края уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

  • 846. Источники энергии - история и современность
    Информация пополнение в коллекции 15.11.2009

    Паровая машина русского механика И.И. Ползунова была построена за 20 лет до создания Уаттом своей машины, в 1766 году на Алтае. Ползунов был высоко образованным человеком для своего сословия, имел представление об машинах Сэвери и Ньюкомена. Перед конструированием машины механик проделал большую работу - не только расчёты, но и преодоление чиновничьей волокиты. И только посулив большую выгоду от использования своей "огнедействующей" машины, Ползунов смог её построить. Но…тяжёлая болезнь - туберкулёз - погубила не только изобретателя, но и его изобретение. После смерти Ползунова машина проработала 43 суток, не только окупила сама себя, но и принесла большую экономию заводу. Машина встала из-за поломки парового котла, сделанного из меди (для пробы), а не из чугуна. Вскоре она была разобрана "за ненадобностью". Схематическая конструкция машины показана на рисунке. У ней было два цилиндра, поршни которого были соединены таким образом, что, когда один из них опускался, то другой в это время поднимался. С помощью механизмов машина работала самостоятельно, требовалось лишь подбрасывать топливо в топку котла. В машине использовалось не только атмосферное давление, но и давление пара. Конструкция Ползунова являлась машиной непрерывного действия. Механик также знал, как можно преобразовать возвратно-поступательное движение её во вращательное, если это потребуется, хотя 90% механизмов завода, на котором стояла машина, требовали именно возвратно-поступательного привода (воздуходувные меха, насосы и пр.). В целом, машина Ползунова являлась первым в мире универсальным тепловым двигателем. Несмотря на печальную судьбу как машины, так и её изобретателя, мы не должны забывать, кто первым изобрёл этот так необходимый для промышленности того времени двигатель - выдающийся уральский механик, солдатский сын Иван Иванович Ползунов.

  • 847. Ишимбайская подстанция электроэнергетического комплекса
    Дипломная работа пополнение в коллекции 06.07.2011

    Ишимба?й (башк. <http://ru.wikipedia.org/wiki/%D0%91%D0%B0%D1%88%D0%BA%D0%B8%D1%80%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA> Ишемба?й) - город (с 1940 <http://ru.wikipedia.org/wiki/1940>) в России <http://ru.wikipedia.org/wiki/%D0%A0%D0%BE%D1%81%D1%81%D0%B8%D1%8F>, административный центр Ишимбайского района <http://ru.wikipedia.org/wiki/%D0%98%D1%88%D0%B8%D0%BC%D0%B1%D0%B0%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%80%D0%B0%D0%B9%D0%BE%D0%BD_%D0%91%D0%B0%D1%88%D0%BA%D0%BE%D1%80%D1%82%D0%BE%D1%81%D1%82%D0%B0%D0%BD%D0%B0> Башкортостана <http://ru.wikipedia.org/wiki/%D0%91%D0%B0%D1%88%D0%BA%D0%BE%D1%80%D1%82%D0%BE%D1%81%D1%82%D0%B0%D0%BD>. Население 68,1 тыс. жителей (2008). Город расположен на юге Республики Башкортостан, в 166 км от Уфы <http://ru.wikipedia.org/wiki/%D0%A3%D1%84%D0%B0>, на реках Белая <http://ru.wikipedia.org/wiki/%D0%91%D0%B5%D0%BB%D0%B0%D1%8F_(%D0%BF%D1%80%D0%B8%D1%82%D0%BE%D0%BA_%D0%9A%D0%B0%D0%BC%D1%8B)> (приток Камы <http://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BC%D0%B0_(%D1%80%D0%B5%D0%BA%D0%B0)>) и Тайрук <http://ru.wikipedia.org/wiki/%D0%A2%D0%B0%D0%B9%D1%80%D1%83%D0%BA_(%D1%80%D0%B5%D0%BA%D0%B0)>. Возникновение и экономическое развитие Ишимбая связано с открытием нефтяных месторождений (Второе Баку <http://ru.wikipedia.org/wiki/%D0%92%D1%82%D0%BE%D1%80%D0%BE%D0%B5_%D0%91%D0%B0%D0%BA%D1%83>). Был образован первый в Поволжье и на Урале нефтепромысел (1932), первая нефтеперерабатывающая установка в посёлке Перегонный <http://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D0%B3%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_(%D0%98%D1%88%D0%B8%D0%BC%D0%B1%D0%B0%D0%B9)> (1933), нефтеперерабатывающий завод <http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%84%D1%82%D0%B5%D0%BF%D0%B5%D1%80%D0%B5%D1%80%D0%B0%D0%B1%D0%B0%D1%82%D1%8B%D0%B2%D0%B0%D1%8E%D1%89%D0%B8%D0%B9_%D0%B7%D0%B0%D0%B2%D0%BE%D0%B4> (1936), построена новая железнодорожная ветка Дёма <http://ru.wikipedia.org/wiki/%D0%94%D1%91%D0%BC%D0%B0> - Стерлитамак <http://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B5%D1%80%D0%BB%D0%B8%D1%82%D0%B0%D0%BC%D0%B0%D0%BA> - Ишимбаево <http://ru.wikipedia.org/wiki/%D0%98%D1%88%D0%B8%D0%BC%D0%B1%D0%B0%D0%B5%D0%B2%D0%BE_(%D0%B6%D0%B5%D0%BB%D0%B5%D0%B7%D0%BD%D0%BE%D0%B4%D0%BE%D1%80%D0%BE%D0%B6%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D0%B0%D0%BD%D1%86%D0%B8%D1%8F)> (1934). В конце 1937 года был введен в строй нефтепровод Ишимбаево - Уфа. В 1932 году <http://ru.wikipedia.org/wiki/1932_%D0%B3%D0%BE%D0%B4> у деревни Ишембай <http://ru.wikipedia.org/wiki/%D0%98%D1%88%D0%B8%D0%BC%D0%B1%D0%B0%D0%B5%D0%B2%D0%BE_(%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D0%BD%D1%8F)>, известной с 1815 года, из скважины 702 <http://ru.wikipedia.org/wiki/%D0%92%D1%8B%D1%88%D0%BA%D0%B0-%D0%91%D0%B0%D0%B1%D1%83%D1%88%D0%BA%D0%B0> ударил. Нефтяной промысел имени Кирова, разбросанный на десяток километров, объединил башкирские деревни Ишимбаево, Кусяпкул <http://ru.wikipedia.org/wiki/%D0%9A%D1%83%D1%81%D1%8F%D0%BF%D0%BA%D1%83%D0%BB%D0%BE%D0%B2%D0%BE_(%D0%98%D1%88%D0%B8%D0%BC%D0%B1%D0%B0%D0%B9)>, Бурансы <http://ru.wikipedia.org/wiki/%D0%91%D1%83%D1%80%D0%B0%D0%BD%D1%87%D0%B8%D0%BD%D0%BE_(%D0%BF%D0%BE%D1%81%D0%B5%D0%BB%D0%BE%D0%BA,_%D0%98%D1%88%D0%B8%D0%BC%D0%B1%D0%B0%D0%B9)>, задав современные границы города. Возле деревни Ишмбаево на левом берегу Белой возник в 1932 году рабочий посёлок имени С. М. Кирова. На правом берегу недалеко от Бурансы (русское название - Буранчино) в 1933 формировался будущий посёлок Перегонный <http://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B5%D0%B3%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_(%D0%98%D1%88%D0%B8%D0%BC%D0%B1%D0%B0%D0%B9)>. С 1934 года <http://ru.wikipedia.org/wiki/1934_%D0%B3%D0%BE%D0%B4> Ишимбай - посёлок городского типа, включавший в себя десяток новых рабочих поселений и старые башкирские деревни. С 10 февраля <http://ru.wikipedia.org/wiki/10_%D1%84%D0%B5%D0%B2%D1%80%D0%B0%D0%BB%D1%8F> 1940 года <http://ru.wikipedia.org/wiki/1940_%D0%B3%D0%BE%D0%B4> Указом Президиума Верховного Совета РСФСР преобразован в город Ишимбай.

  • 848. Ідеальна оптична система
    Информация пополнение в коллекции 05.12.2010

    У практичній роботі конструкторів оптичних приладів досить широко використовуються властивості кардинальних елементів і основні математичні залежності ідеальної оптичної системи. Графічне розвязання задач дозволяє найбільш наочно знайти оптимальний варіант. Чотири способи побудови ходу променів крізь позитивну і негативну оптичні системи зображено на рис. 8. Побудови виконані з припущень, що оптична система розташована в однорідному середовищі, тобто n = n', f = -f, а отже, вузлові N, N' і головні Н, Н' точки збігаються. Дамо деякі пояснення до рис. 8. Точки, загальні для заданого і допоміжного променів у передній фокальній площині, умовно позначені буквою C, а точки, загальні для тих же променів у задній фокальній площині, позначені відповідно через С'. Промені, що виходять із точок C, після проходження системи будуть рівнобіжними між собою. Якщо головні площини зливаються (система тонка), то побудови будуть простіші.

  • 849. Інтерференція світла
    Контрольная работа пополнение в коллекции 13.12.2010

    Найпростіша інтерференційна схема звичайно реалізується у вигляді виготовленої з прозорого матеріалу плоскопаралельної чи клінчастої пластини, на котру падають пучки променів, що мало відкидаються по напрямку від нормалей до поверхонь (рис.7). Характер інтерференції в пластині (двопроменевої чи багатопроменевої) залежить від коефіцієнта відображення поверхонь. При маленькому значенні коефіцієнта відображення, що характерно для поверхонь звичайних стекол і інших матеріалів у видимій області, інтенсивності пучків після двох відображень сильно розрізняються між собою (особливо в минулому світлі), і практично спостерігається малоконтрастна двопроменева інтерференційна картина. Лише спеціальні дзеркальні покриття поверхонь пластини створюють умови для одержання контрастної багатопроменевої інтерференційної картини. Оптичну різницю ходу, що виникає між сусідніми променями у відбитому чи минулому світлі (без урахувань фазових змін на поверхнях), для плоскопаралельної пластини визначають за формулою

  • 850. Історія розвитку біофізики як науки. Класифікація і характеристика основних напрямків біофізики
    Контрольная работа пополнение в коллекции 25.01.2011

    Н.Бор (1961,1962) розглядав проблему співвідношення фізики і біології на основі принципу додатковості. Він вважав, що власне біологічні закони додаткові до законів, яким підкоряються неживі тіла. Не можна одночасно визначити фізико-хімічні властивості організму і явища життя пізнання одного виключає пізнання іншого. Життя варто розглядати "...як основний постулат біології, що не піддається подальшому аналізу, подібно тому, як існування кванта дії... утворює елементарну основу атомної фізики". Таким чином, Бор вважав біологічні і фізико-хімічні дослідження додатковими, тобто несумісними, хоча і не суперечними один одному. Ця концепція не має нічого загального з віталізмом, тому що вона заперечує існування якої-небудь границі застосування фізики і хімії до рішення біологічних проблем. "...Жоден результат біологічного дослідження не може бути однозначно описаний інакше, як на основі понять фізики і хімії, зовсім так само, як всякий опис досвіду навіть в атомній фізиці повинен, у кінцевому рахунку, спиратися на поняття, необхідні для свідомої реєстрації почуттєвих сприйнять".

  • 851. К вопросу о Единой теории полей и взаимодействий
    Курсовой проект пополнение в коллекции 24.07.2010

    Еще более удивительные частицы предсказывает теория«великого объединения», в которой электрослабое поле объединяется с сильным, ядерным. Эта теориядальнейшее развитие идей Янга и Миллса, следующий шаг в построении единой теории поля. Хотя теория«великого объединения»еще весьма неопределенна, у нее много различных вариантов и плохо изученных возможностей, предсказание цунами-монополей получается почти в любом ее варианте.Заглянуть в эту самую интригующую область нашей истории, вплоть до фантастически малых величин порядка 10~35 секунд, позволяет теперь теория«великого объединения». Это был мир первозданной плазмы, где еще не существовало элементарных частиц, а были только их составные частипервичные«кубики»-кварки и связывающее их поле сильного взаимодействия. Некоторые частички, находившиеся в этом огненном сиропе, возможно, несли магнитный заряд. Впрочем, какой это был заряд, сказать трудно. Температура была еще так велика, что в первые мгновения после своего рождения раскаленный мир оставался совершенно симметричным, любые его свойства проявлялись с равной вероятностью. Расщепление единого симметричного взаимодействия на электромагнитное, слабое, сильноена те виды взаимодействий, которые действуют в современном мире,произошло позднее, приблизительно через 10~1410~13 секунд после начала расширения. Расчеты показывают, что от тех давних«горячих денечков»нам в наследство должно было остаться довольно много тяжелых монополей. Сначала даже получалось, что монополей во Вселенной должно быть столько же,«сколько протонов. Затем, при более детальном рассмотрении реакций в первичном огненном шаре, массу магнитного вещества пришлось уменьшить, но все равно она очень великана много порядков больше того, что следует из анализа экспериментальных данных.

  • 852. К вопросу о механизме сверхпроводимости в металлах- сверхпроводниках.
    Информация пополнение в коллекции 12.01.2009

    Введение. Почему решили связать появление сверхпроводимости с тепловыми колебаниями атомов решетки? Потому, что материалы изотопов элемента имели разные температуры перехода в сверхпроводящее состояние. Конечно такая зависимость есть но она незначительна. Сверхроводимость не зависит от типа решетки. Вокруг сверхпроводника ниобия в таблице элементов много проводников, но не сверх. А тепловые колебания их атомов практически такие же. Почему же у других металлов сверхпроводимость не обнаруживается? Тепловые колебания атомов не главный механизм сверхпроводимости! Проводимость конечно зависит от температуры. Но у меди, серебра почему-то при самых низких температурах сверхпроводимость не наблюдается, а у проводника ниобия, который проводит значительно хуже меди и серебра-сверхпроводимость есть. Есть она и у более тяжелого свинца с типом кристаллической решетки меди. Значит не тепловые колебания главные здесь, а какие-то процессы в зоне проводимости. Для их рассмотрения необходимо знать число электронов, отдаваемое каждым атомом решетки в зону проводимости. Авторы БКШ утверждают, что в сверхпроводимости участвует каждый десятитысячный электрон , а согласно теории твердого тела в простой проводимости участвует от одного до примерно трех электронов от атома или грубо каждый десятый или сотый электрон. Тем не менее токи сверхпроводимости значительно больше токов обычной проводимости! Что-то происходит с электронами в зоне проводимости! Задача поставлена. Решение этой задачи на качественном уровне. Зона проводимости представляется мне как поверхность ячейки Вигнера-Зейтца,которая располагается между атомами кристаллической решетки. А больше электрону проводимости и негде находиться, как только на этой поверхности. При переходе в сверхпроводящее состояние в зоне проводимости электроны должны образовать коллектив или стать зависимыми друг от друга. Значит в зоне проводимости число электронов отданное атомом должно быть значительным по сравнению с медью, никелем или серебром,которые не сверхпроводники. Число электронов проводимости в металлах-элементах приводится в работе- http://kristall.lan.krasu.ru/Science/publ_grodno.html У ванадия,ниобия и тантала по 5 электронов проводимости на атом и соответственно температуры переходов Тс=5,30...9,26 и 4,48К. У; гафния, титана и циркония по 3 электрона, а Тс=0,09...0,39 и 0,65К. Посмотрим таблицу элементов справа-там свинец, олово- по 4-5 электронов и алюминий, галий, индий, талий у которых по 2-3 электрона, а Тс=1,196...1,091...3,40...2,39 соответственно. У свинца и олова Тс=7,19 и 3,72 соответ- ственно. Что и требовалось доказать. Так как зона проводимости поверхность, а электроны обладают спинами, то по моему организация электронов проводимости в коллектив идет посредством взаимодействия через спины. Я здесь хочу сказать, что электроны проводимости конечно как-то объединяются, но только не так как в БКШ, когда они начинают заигрывать на расстоянии в несколько тысяч атомов между которыми находятся еще больше электронов и после этого \"спариваются\". Ясно и то,что число энергетических уровней в зоне проводимости не равно числу электронов проводимости (как в квантовой механике), а составляет величину равную числу электронов проводимости от атома кристаллической решетки, т.е. 1-5 или чуть больше. Электроны проводимости вносят низкий вклад в теплоемкость металла (закон Дюлонга-Пти). Теоретический же расчет по модели Друде показывает,что вклад электронов в теплоемкость должен быть значительным. Предположительно, в реальном пространстве, зона проводимости должна находится в районе поверхности ячейки Вигнера-Зейтца. Грубо, она напоминает собой пчелиные соты. Поэтому электроны проводимости вносят низкий вклад в теплоемкость металла, т.к. они по сути находятся в пространстве двумерном со сложной поверхностью. Здесь ошибка Друде. А периодичность для электрона проводимости в кристалле связана не столько с постоянной решетки, сколько со стереометрией гибридных (валентных) орбиталей атомных остовов. Смотри осциляции в опытах де-Гааза-ван-Альфена по исследованию поверхности Ферми. Выводы: Согласно выше изложенного. Для повышения Тс в металлах могу предложить следующее. Отрицательно зарядить металлический образец и испытать его. Литература: 1.К вопросу о металлической связи в плотнейших упаковках химических элементов http://kristall.lan.krasu.ru/Science/publ_grodno.html 2. Сверхпроводимость: позавчера, вчера, сегодня, завтра http://fpfe.fizteh.ru/tvor/cond.html Приложение1. О предпосылках к открытию сверхпроводимости в дибориде магния (2001г) и в алмазах (2004г) смотрите на русском- http://www.sciteclibrary.ru/rus/catalog/pages/4526.html На английском- http://www.belarus.net/discovery/filipenko/fil2.htm

  • 853. К вопросу энергосбережения и повышения энергоэффективности сложной системы
    Информация пополнение в коллекции 16.09.2012

    С точки зрения энергодинамической системы физических величин и понятий (ЭСВП) [9-11] проблемы, рассматриваемые в части энергообеспечения зданий и сооружений, относятся к пятому уровню иерархической структурной схемы (по формам энергии системы). Рассматриваемые проблемы не являются системными и не исследуются связи с другими формами энергии и взаимодействия тела (здания) со средами. Не исследуются состояние видов энергии отдельных форм движения, перераспределения, которые происходят между видами энергии отдельных форм движения. Т.е. считается, достаточно в существующей системе на 5 иерархическом уровне добавить (заменить) источник одной или двух формы энергии (электрической и тепловой), то решится вопрос энергосбережения и энергоэффективности. Считается, что общая энергия открытой системы останется постоянной и не произойдет перераспределений форм движения энергии на шестом иерархическом уровне.

  • 854. К механизму электропроводности магнитной жидкости с графитовым наполнителем
    Статья пополнение в коллекции 14.07.2007

     

    1. Смерек Ю.Л. Электрическая проводимость магнитной жидкости с мелкодисперсным наполнителем в магнитном поле. //Вестник СГУ. 2001. Вып. 28. С. 184 187.
    2. Закинян Р.Г., Смерек Ю.Л., Закинян А.Р. Элементарная теория электропроводности магнитной жидкости с графитовым наполнителем. Записки физико-математического факультета. Выпуск 2.
    3. Закинян Р.Г., Смерек Ю.Л., Закинян А.Р. Об одном механизме электропроводности магнитной жидкости с графитовым наполнителем. // Проблемы физико-математических наук. Материалы 48 научно-методической конференции преподавателей и студентов. Ставрополь, 2003. С. 29 32.
    4. Калашников С.Г. Электричество. М.: Наука, 1985. 576 с.
    5. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Электродинамика сплошных сред. Т. 8. - М.: Наука, 1982. - 624 с.
    6. Ильин В.А., Позняк Э.Г. Основы математического анализа. Часть 1. М.: Наука, 1971. 510 с.
    7. Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. М.: Наука, 1981. 799 с.
    8. Фертман В.Е. Магнитные жидкости. - Минск: "Вышейшая школа", 1988. - 184 с.
    9. Падалка В.В., Закинян Р.Г., Бондаренко Е.А. К вопросу об образовании объемного заряда в приэлектродном слое разбавленной магнитной жидкости. // Известия вузов. Северо-Кавказский регион. Естественные науки, 2002. - № 4. С. 36 38.
  • 855. К проблеме самодвижения
    Реферат пополнение в коллекции 09.12.2008

    Для вращательного движения подобного эффeкта можно дoбитьcя имeя двa coocныx близкopacпoлoжeнныx тeлecкoпичecкиx cтepжня c oдинaкoвыми мaccaми нa кoнцax кaждoгo из ниx. Ocь пpoxoдит чepeз гeoмeтpичecкий цeнтp cтepжнeй (пpoдoльный) - и oни cвoбoднo мoгyт нa нeй вpaщaтьcя. Teпepь мeняя мoмeнт инepции y oднoгo cтepжня - мaccы paздвигaютcя - зa cчeт тeлecкoпичнocти (pacтeт длинa cтepжня), чтo yвeличивaeт eгo мoмeнт инepции и пpи cближeнии c дpyгим cтepжнeм мaлoй инepтнocти (пepeд этим тeлecкoпичecкиe cтepжни были paзвeдeны нa нeкий yгoл). To этoт пocлeдний cтepжeнь бyдeт cтpeмитьcя пoвepнyтьcя в cтopoнy бoлee инepтнoгo cтepжня. Ocь cиммeтpии пpиoбpeтaeт кинeтичecкий-пoдвижный xapaктep. Итaк, ecли этoт пpoцecc opгaнизoвaть нeпpepывнo-цикличecки, тo пoявляeтcя вoзмoжнocть peaлизaции пoшaгoвoro cтapт-cтoпнoгo пceвдo-мoмeнтa импyльca. То есть, мы здесь используем изменяющиеся моменты инерции с тем, чтобы поворот системы был всегда направлен в одну сторону. Дpyгими cлoвaми, зaмкнyтaя cиcтeмa peaльнo мoжeт пoвopaчивaть ceбя нa любoй зaдaнный yгoл зa cчeт внyтpeнниx cил. B oтличиe oт тoгo cлyчaя, кoгдa чeлoвeк cтoит нa cкaмeйкe Жyкoвcкoгo и дepжит oднoй pyкoй зa вepтикaльнyю ocь вeлocипeднoe кoлeco, a дpyгoй pyкoй кpyтит eгo зa oбoд. Пpи этoм oн caм пoвopaчивaeтcя. Ho в этoм пocлeднeм cлyчae эффeкт пceвдo-мoмeнтa импyльca пo ycлoвию oтcyтcтвyeт. Bышeoпиcaнный эффeкт имeeт oчeнь вaжнoe знaчeниe - cтaнeт peaльнo вoзмoжным aккyмyлиpoвaть пceвдo-мoмeнтoм импyльca peaльный вcтpeчный мoмeнт импyльca и, кaк cлeдcтвиe, кинeтичecкyю энepгию вpaщeния. Здecь oпиcaны нe вce виды oптимaльнoгo cтapт-cтoпнoгo вpaщeния. Haдeюcь, чтo читaтeль o ниx дoгaдaeтcя caм. Ecли в нaшиx кoнcтpyкцияx пpocyммиpoвaть пceвдoвpaщeниe в oднy cтopoнy и peaльнoe вpaщeниe в пpoтивoпoлoжнyю - тo мы пpи жeлaнии пoлyчим «нeпoдвижный» мaxовик! Taкoй мaxoвик cмoжeт зaпacaть и oтдaвaть энepгию. Этy жe , фyнкцию cмoгyт выпoлнять и двa oдинaкoвыe пo мacce тeлecкoпичecкиx oбpyчa co cвoйcтвaми измeнeния cвoиx диaмeтpoв (тo ecть мoмeнтoв инepции). Или тo жe caмoe мoжнo иcпoльзoвaть двa paвныx пo мacce диcкa из pacтягивaющeгocя мaтepиaлa (peзинa и т.п.). Интepecнo былo бы cдeлaть нa нoвoм пpинципe гиpocкoп - co вceми вытeкaющими oтcюдa пocлeдcтвиями. И кaкoй бы здecь вид имeлa cилa Kopиoлиca? Ha oпиcaннoм эффeктe вoзмoжнo coздaниe нoвoгo пoкoлeния тexники и, в чacтнocти, в элeктpoдинaмикe и элeктpoтexникe. He иcключeнo, чтo в микpoмиpe ecть oбpaзoвaния, кoтopыe paбoтaют имeннo тaк. Этoт эффeкт пoзвoлит вoзвpaтнo-пocтyпaтeльнoe движeниe пpeвpaщaть вo вpaщaтeльнoe нoвыми cpeдcтвaми. Taк кaк этoт эффeкт нoв и для тeopeтичecкoй мexaники и для тeopии мaшин и мexaнизмoв, тo интepecнo изyчить eгo xapaктep в кoнтaктe c oбъeктaми этиx диcциплин нaпpимep, ecли пceвдoдвигaтeль вpaщaeт peмeнь или лeнтy или пepемещaeтcя пo плocкocти и т.д.

  • 856. К расчету эффективных магнитных полей в магнитных жидкостях
    Доклад пополнение в коллекции 21.03.2007

    Изучение диполь-дипольного взаимодействия однодоменных дисперсных частиц возможно также с помощью анализа температурных зависимостей магнитной восприимчивости магнитных жидкостей. Выражение для расчета эффективного поля можно получить, воспользовавшись подходом, предложенным в [2], возможным благодаря непосредственной связи эффективного поля с действующей на частицу среды силой. При этом, естественно воспользоваться результатами макроскопической теории для объемной плотности сил в магнитном поле. Ранее, выражение для таких сил выводилось во многих работах [3-5] путем приравнивания вариации свободной энергии (при постоянной температуре и векторном потенциале магнитного поля) работе внутренних сил. Вместе с тем авторами работы [6] было показано, что в более общем случае, при вычислении вариации полной (или внутренней) энергии необходимоучитывать вариации температур или энтропий. Если осуществить некоторое виртуальное перемещение элемента магнитной жидкости , находящейся в магнитном поле Н (например, в поле соленоида) так, что часть жидкости вытиснится из пространства, занимаемого полем, то изменение энергии поля, соответствующее изотермическому процессу может быть записано в виде, аналогичном выведенного в [3] для жидкого диэлектрика:

  • 857. Кабели и шины
    Информация пополнение в коллекции 23.10.2009

    Для монтажа тросовых электропроводок сначала размечают места крепления анкерных и промежуточных конструкций вдоль помещения по линии расположения светильников или силовых электроприемников, выдерживая расстояния между подвесками, ответвительными коробками и светильниками по проекту и эскизам замеров на месте. Далее крепят анкерные и натяжные устройства к основным строительным элементам здания (стенам, фермам и др.), устанавливают подвески для промежуточных креплений и крепят их к нижним поясам ферм, колоннам, перекрытиям, в щелях между уголками ферм или плит перекрытия. Затем подготавливают отрезки несущего троса, струны и оттяжки, оконцовывают их петлями с использованием гильз и обойм, собирают концевое крепление и отмеряют отрезки проводов для линий электропроводки и питающей магистрали (по чертежам или эскизам замеров). После этого вводят провода в коробки, соединяют концы проводов в коробках или сжимах, крепят их к тросу (при незащищенных проводах) полосками через 0,30,35 м, перфорированной поливинилхлоридной лентой через 0,5 м, подвесками через 1,5 м с пластмассовыми клицами на два или четыре провода и обоймами для подвески светильников. При применении защищенных проводов крепление полосками осуществляют через 0,5 м. Полоски мягкие прокладки должны выступать на 1,52 мм с обеих сторон троса. Далее прозванивают и маркируют провода. Если для тросовой проводки применяют специальные провода, то ввод и ответвление осуществляют сжимами коробок У245 и У246 без разрезания фазных проводов.

  • 858. Кабельні лінії
    Информация пополнение в коллекции 29.01.2011

    Останнім часом випускають кабелі, у яких свинцеве покриття замінено алюмінієвим або пластмасовим (СОПР, вініл). Конструктивне позначення силових кабелів складається з кількох літер:

    1. якщо перша літера А - жили кабелю алюмінієві,якщо такої немає - жили з міді;
    2. друга буква позначає матеріал ізоляції жив (Р - гума, В-полівінілхлорид, П - поліетилен, для кабелів з паперовою ізоляцією літера не ставиться);
    3. третя буква позначає матеріал оболонки (С - свинець, А-алюміній, Н і HP - негорюча гума-найр, В і ВР - полівінілхлорид, СТ - гофрована сталь); -
    4. четверта буква позначає захисне покриття (А - асфальтований кабель , Б - броньований стрічками, Г - голий (без джутовою обплетення), К - броньований круглої сталевої оцинкованої дротом, П - броньований плоскою сталевої оцинкованої дротом).
    5. Буква Н в кінці позначення говорить про те, що захисний покрив негорючий, Т - вказує на можливість прокладки кабелю в трубах,
  • 859. Кабельні лінії в траншеях
    Информация пополнение в коллекции 01.09.2010

    Після завершення маркування і заключного огляду кабель засипають шаром м'якої просіяної землі «пушонки» або піску завтовки 100 мм, поверх якого кладуть в один шар цеглу (не силікатну) або залізобетонні плитки для захисту кабелю від механічних пошкоджень під час розкопок (див. рис. 1.3.). Траншею засипають вийнятою з неї землею, якщо вона не містить каміння, будівельного сміття, кусків шлаку тощо. Засипання здійснюють шарами завтовшки не більше 200250 мм, змочуючи кожний шар грунту водою і ущільнюючи його трамбуванням. У зимовий період траншеї засипають сухим піском або дрібно просіяною землею, оскільки вийнята з траншеї земля, яка змерзлася, утворює брили, що можуть пошкодити кабель, а з настанням теплої погоди може відтанути і дати зцачне осідання грунту по всій трасі прокладуваного кабелю. Засипання верхньої частини траншеї грунтом і зачищення траси після засипання рекомендується здійснювати механізованим способом за допомогою бульдозера. (Кабелі напругою до 1000 В повинні мати такий захист лише на ділянках, де ймовірні механічні пошкодження, наприклад у місцях частих розкопок).

  • 860. Кабельні муфти
    Дипломная работа пополнение в коллекции 24.01.2011

     

    1. Анастасиев П.И., Бранзбург Е.3., Коляда А.В. Проектирование кабельных сетей и проводок. М., 1980.
    2. Атабеков В.Б. Монтаж електричних мереж і силового електроустаткування: Підруч./Пер. з рос. Т.А. Сиротинко. Вища шк.; 1995.
    3. Белоцерковец В.В., Чусов Н.П., Боязный Я.М. Механизация электромонтажных работ. М., 1977.
    4. Воронина А.А., Шибенко Н.Ф. Безопасность труда в электроустановках: Учеб. пособ. для сред. ПТУ. 4-е изд., перераб. и доп. М.: Высш. шк., 1984.
    5. Евсеев Р.Е., Евсеев В.Р. Сварка при производстве электромонтажных работ. Л., 1978.
    6. Живов М.С. Подготовка трасс электропроводок и кабельных линий. М., 1977.
    7. Живов М.С. Прокладка проводов и кабелей. М., 1978.
    8. Инструкция по прокладке кабелей напряжением до 110 кВ (СН 85-74). М., 1975.
    9. Клюев А. А., Этус Н.Г. Справочник по монтажу вторичных устройств, кабелей и электроосвещения на электростанциях и подстанциях. М., 1978.
    10. Корнилов Ю.В., Бредихин А.Н. Слесарь-электромонтажник: Учеб. пособ. для СПТУ. 2-е изд., перераб. и доп. М.: Высш. шк., 1988.
    11. Лигерман И.И. Кабельные сети промышленных предприятий. М., 1975.
    12. Пантелеев Е.Г. Монтаж кабельных линий. М., 1979.
    13. Правила устройства электроустановок. М., 1977.
    14. Принц М.В., Цимбалістий В.М. Освітлювальне і силове електроустаткування. Монтаж і обслуговування. Львів: Оріяна-Нова, 2005.
    15. Смирнов Л.П. Электромонтер-кабельщик. М., 1978.
    16. Строительные нормы и правила СНиП Ш-33-76. Электротехнические устройства. Правила производства и приемки работ. М., 1977.
    17. Техническая документация на муфты для силовых кабелей с бумажной и пластмассовой изоляцией до 35 кВ. М., 1982.
    18. Тирановский Г.Г. Механизация кабельных работ на энергетических объектах. М., 1976.
    19. Троицкий И.Д. Производство кабельных изделий. М., 1979.
    20. Чусов Н.П., Любашевская Р.И. Механизация кабельных работ на промышленных объектах. М., 1976.
    21. Электротехнический справочник. Т. І, "Энергия", 1971.