Історія розвитку біофізики як науки. Класифікація і характеристика основних напрямків біофізики
Контрольная работа - Физика
Другие контрольные работы по предмету Физика
Історія розвитку біофізики як науки. Класифікація і характеристика основних напрямків біофізики
Біофізика стара наука. Уже давно ставилися і зважувалися фізичні проблеми, звязані з життєдіяльністю організмів, такі, наприклад, як визначення швидкості поширення нервового порушення (Гельмгольц) чи перебування спектральних основ кольорового зору (Максвелл). Фізичні методи застосовувалися в біології здавна досить згадати про мікроскопи. Однак лише в другій половині XX століття фізика обєдналася з біологією у вивченні основних явищ життя, і почалося формування теоретичної й експериментальної біофізики як великої і різноманітної області фізики, а не підсобного розділу фізіології. Розвиток біофізики безпосередньо звязано з вирішальними досягненнями біології, насамперед молекулярної, з виникненням кібернетики, з успіхами фізики конденсованих систем (зокрема, фізики полімерів).
Сучасний стан природознавства не тільки допускає, але і вимагає викладу основ біофізики, що повинне виходити з представлення про біофізику як області фізики. Відповідно до цього представлення дослідження відноситься до біофізики, якщо задача його поставлена як фізична задача. Іншими словами, методи рішення цих задач можуть бути і нефізичними.
Побудова біофізики в цілому вимагає молекулярного обґрунтування. Молекулярна біофізика фізика білків і нуклеїнових кислот найбільш розвита в даний час. У молекулярній біофізиці ми зустрічаємося зі специфічними властивостями і будівлею дуже складних молекул, що визначають явища життя, але найважливіші проблеми біології, насамперед проблема розвитку, залишаються поки за її межами. Однак, як показують дослідження останніх років, до вивчення цих проблем можна і треба підійти, спираючись на добре розроблені молекулярні представлення. Тим самим, молекулярна біофізика повинна бути основою для розгляду процесів життєдіяльності кліток і організмів на всіх рівнях структури і функціональності. Від молекул ми переходимо до надмолекулярних систем, до кліток і організмів. Фізичне тлумачення явищ регуляції і розвитку вимагає як молекулярно-фізичних, так і загальних феноменологічних представлень.
Молекулярна біофізика може бути визначена як область перекривання молекулярної фізики (зокрема, фізики макромолекул) і молекулярної біології. Отже, вона є частиною обох цих областей природознавства. Вона розвивалася одночасно з молекулярною біологією і невіддільна від її.
Молекули, якими займається біофізика, характеризуються багатьма особливостями, що відрізняють їх від молекул неживої природи. Білки самі складні з відомих нам молекул. Будучи макромолекулами, білки і нуклеїнові кислоти не є статистичними системами, на відміну від макромолекул синтетичних полімерів. Це динамічні системи, свого роду машини, поводження яких визначається положенням і функціональністю кожного елемента, що утворить молекулу. Основна задача молекулярної біофізики складається в дослідженні специфічних особливостей, що визначають будівлю і властивості біологічних молекул. Фізична теорія, з якою приходиться мати справу в молекулярній біофізиці, є теорія будівлі і фізичних властивостей цих молекул і одночасно теорія методів дослідження, застосовуваних в експерименті.
Біофізика, так само як і біологія, зараз стрімко розвивається. Наші знання безупинно збагачуються, багато представлень швидко застарівають. Спроба викласти сучасну біофізику повинна складатися у фіксації принципових і надійно встановлених положень і у вказівці подальших шляхів розвитку.
Тіла неживої і живої природи однаково побудовані з атомів і молекул. Тим самим вони підкоряються єдиним законам, що виражають будівлю і властивості речовини і полючи. Сучасна фізика звертається до вивчення життя. Проблема співвідношення фізики і біології стала зараз особливо актуальної.
Тісний звязок біології і фізики представлявся очевидної на ранніх етапах розвитку природознавства. Надалі, у міру поглиблення біологічних знань, що розкривали складність і своєрідність явищ життя, шляху біології і фізики усе більш розходилися. Основні біологічні закономірності - насамперед дарвінівський закон природного добору розглядалися як зовсім несумісні з фізикою.
У XIX столітті були створені дві великі еволюційні теорії. Другий початок термодинаміки (Клаузиус, Гиббс, Больцман) дає закон еволюції речовини в ізольованій системі до його найбільш ймовірного стану, таким, що характеризується максимальною невпорядкованістю, максимальною ентропією. Навпроти, теорія біологічної еволюції (Дарвін) виражає зростання упорядкованості і складності живих систем, починаючи з примітивних мікроорганізмів і кінчаючи Homo sapiens з його мислячим мозком. Між цими двома теоріями дійсно мається невідповідність біологічна еволюція, філогенез, а також онтогенез ніяк не погодяться з рівноважною термодинамікою ізольованих систем.
У той же час у XIX столітті біологія зробила могутній вплив на розвиток фізики. Закон збереження енергії, перший початок термодинаміки, був відкритий Майером, Джоулем і Гельмгольцем. Як відомо, Майер виходив у своїй роботі зі спостережень над живим організмом, над людьми. Менш відомо, що Гельмгольц також виходив з біологічних явищ.
Основне питання, з відповіді на який повинно починатися побудова і вивчення біофізики, тобто фізики живої природи, це питан?/p>