Історія розвитку біофізики як науки. Класифікація і характеристика основних напрямків біофізики
Контрольная работа - Физика
Другие контрольные работы по предмету Физика
рганізму. У системі, що складається з малого числа атомів, флуктуації повинні знищувати упорядкованість. Саме завдяки многоатомності організм існує відповідно до законів термодинаміки.
Друга проблема молекулярні основи життя. Шредингер аргументує матеріалістичне представлення про молекулярну природу генів і ставить питання про структуру речовини спадковості і причинах його стійкого відтворення в ряді поколінь. Відповіді на ці питання дала молекулярна біологія, виникнення якої було у великому ступені стимульовано книгою Шредингера.
Третя проблема квантовомеханічні закономірності, чітко виражені в радіобиологічних явищах. Обговорюючи праці Тимофеева-Ресовского, Дельбрюка й ін., Шредингер відзначає відповідність біологічних процесів законам квантової фізики.
Книга Шредингера дуже важлива, тому що в ній не тільки показана відсутність протиріч між фізикою і біологією, але і написані шляхи розвитку біофізики, реалізовані надалі.
Ельзасер (1958) протиставляв фізику біології. Запас інформації, що міститься у вихідній зародковій клітці, зиготі, значно менше, ніж у дорослому багатоклітинному організмі. Зростання обсягу інформації, з погляду Ельзасера, фізично незясовно це специфічна для живих систем "біотонна" закономірність.
Вигнер (1971) вважав, що саморепродукція біологічних молекул і організмів суперечить квантовій механіці. Імовірність існування станів, що саморепродукуються, практично дорівнює нулю.
У важливій роботі Ейгена (1973), присвяченій самоорганізації й еволюції біологічних макромолекул, переконливо аргументується теза про достатність сучасної фізики для пояснення біологічних явищ.
Живий організм являє собою відкриту, саморегульовану і гетерогенну систему, що самовідтворюється, найважливішими функціональними речовинами якої служать біополімери - білки і нуклеїнові кислоти. Така система підлягає комплексному фізичному і хімічному дослідженню. Її пізнання повинне спиратися на розкриття фізичних особливостей життя на фізичний розгляд розвитку організму, його нерівновагі, упорядкованості, системності.
Біофізика є фізика живих організмів. Термодинамічний і теоретико-інформаційний аналіз явищ життя зняв удавані протиріччя між фізикою і біологією. Не можна не погодитися з Ейгеном, коли він затверджує, що сучасна фізика в принципі достатня для пояснення явищ життя для обґрунтування біології. Таке обґрунтування вимагає введення нових понять (наприклад, поняття селективної цінності інформації), але не побудови принципово нової фізики. Нова фізика, скажемо, квантова механіка чи теорія відносності, виникала в результаті встановлення границь застосовності раніше прийнятих представлень. У біології ми поки не зустрічаємося з такими границями для фізики.
Біофізичне дослідження починається з постановки фізичної проблеми, формулюємої на основі загальних законів фізики й атомно-молекулярних (тобто квантовомеханічних) представлень. Шлях біофізики йде через феноменологію (насамперед через термодинаміку і теорію інформації), до атомно-молекулярного дослідження живого тіла. Живе тіло принципове макроскопично, складається з дуже великого числа атомів, молекул, ланок полімерних ланцюгів, що володіють тією чи іншою мірою незалежними ступенями волі. Упорядкованість біологічної системи і її здатність до розвитку не могли б існувати, якби система була мікроскопічної і, виходить, підданою дуже великим флуктуаціям.
Біологічна проблема може зважуватися засобами фізики (скажемо, за допомогою електронного мікроскопа), але від цього дослідження ще не стає біофізичним. І, навпроти, фізична задача може зважуватися біологічними засобами. Так, постановка проблеми генетичного коду відповідності між послідовністю амінокислотних залишків у білковому ланцюзі і послідовністю нуклеотидів у ДНК є постановка фізичної задачі, заснована на фізико-хімічній гіпотезі про існування коду. Рішення цієї фізичної задачі було, однак, отримано за допомогою чисто біологічних і хімічних методів.
Постановці фізичної проблеми завжди передує велика робота в області біології, фізіології, біохімії, цитології і т.д. Біофізика велике поприще нових великих відкриттів, рішень справжніх загадок природи. Може показатися, що до якої би біологічної проблеми ні звернувся фізик, він порівняно швидко прийде до такого відкриття, тому що міць його ідей і методів дуже велика. Однак щира ситуація виявляється іншою. Складність біологічних обєктів і явищ утрудняє формулювання фізичної задачі. Постановка такої задачі можлива лише після глибокого біологічного дослідження.
Отже, робота в області біофізики жадає від дослідника дуже серйозних зусиль. На перехресті наук це неминуче. Біофізик це фізик, що володіє широкою біологічною ерудицією і разом з тим здатний поставити і вирішити фізичну задачу. Біологічна ерудиція має на увазі не тільки знання спеціальних областей біології, що безпосередньо відносяться до теми роботи, скажемо, молекулярній біології чи фізіології. Не знає біології той, хто далекий живій природі, не знаком із зоологією і ботанікою. Саме знання цих основ біології (а фізики іноді відносяться до них зі зневагою) формує біологічний світогляд, без якого побудова справжньої біофізики неможлива.
Кінцеві цілі біології і біофізики єдині вони складаються в пізнанні сутності життєвих явищ. Єдині і прикладні задачі в медицині і фармакології, у сільському господарстві і техніці. Але, будучи частиною фізики, біофізика не по