Физика

  • 641. Изучение закономерностей реабсорбции излучения донора на триплетных молекулах акцепторов энергии
    Статья пополнение в коллекции 22.07.2007

    К настоящему времени накоплен и обобщен большой теоретический и экспериментальный материал по межмолекулярному триплет-триплетному переносу энергии электронного возбуждения [1,2]. Основные закономерности переноса энергии триплетного возбуждения между молекулами, в большинстве своем, были установлены на основании результатов экспериментального исследования тушения фосфоресценции донора молекулами акцептора в твердых растворах органических соединений. Однако, некоторые особенности фосфоресценции донорно-акцепторных смесей в твердых матрицах к настоящему времени не получили достаточно полного объяснения. Одной из необъясненных до конца особенностей тушения фосфоресценции донора молекулами акцептора [1] является то, что сильное тушение фосфоресценции донора в присутствии молекул акцептора сопровождается лишь незначительным сокращением времени ее затухания. Существенный вклад, на наш взгляд, в уменьшение интенсивности фосфоресценции донора без изменения ее времени затухания может вносить реабсорбция излучения донора на молекулах акцептора в триплетном T1-состоянии. Действительно, в работе [3] было обнаружено поглощение фосфоресценции донора (бензофенона) триплетными молекулами акцептора (нафталина). Однако, закономерности этого явления и его вклад в изменение интенсивности фосфоресценции донора не были исследованы. В настоящей работе установлены и исследованы закономерности реабсорбции фосфоресценции бензофенона (донор энергии) на молекулах дифенила, нафталина и аценафтена (акцепторы энергии), которые позволяют оценить вклад данного явления в изменение интенсивности фосфоресценции донора в присутствии акцептора и определить параметры триплетных молекул акцептора (время их накопления и концентрацию).

  • 642. Изучение измерительных приборов. Оценка погрешностей измерений физических величин
    Контрольная работа пополнение в коллекции 23.12.2010

    Изучить порядок оценки погрешностей при прямых и косвенных измерениях физических величин, ознакомиться с устройством, принципом действия простейших измерительных приборов и определить объём заданного тела. Приборы и принадлежности: штангенциркуль, микрометр, исследуемое тело.

  • 643. Изучение компенсационного метода измерений
    Контрольная работа пополнение в коллекции 18.07.2007

    5. Проведите измерение неизвестной э.д.с. Для этого

    • Зажмите один спай термопары двумя пальцами.
    • Установите переключатель «К»-«И» в положение «И».
    • Установите стрелку гальванометра на «0» вращением рукояток секционного переключателя «mV» и реохорда «mV», вначале при нажатой кнопке «ГРУБО», а затем «ТОЧНО».
    • Достижение компенсации в этом случае означает выполнение условия (7).
    • Значение измеряемого э.д.с. в милливольтах будет равно сумме показаний секционного переключателя и реохорда, умноженной на значение множителя, установленной на переключателе пределов измерений при помощи штепселя.
    • При подключении источника тока (термопары) к потенциометру необходимо соблюдать полярность. Если полярность источника тока неизвестна, и он подключен к клемма «Х» неправильно, то компенсации при измерении добиться невозможно (источники включены «не встречено»). Для изменения полярности следует воспользоваться тумблером «+»,«-».
  • 644. Изучение конструкций реле, применение в схемах релейной защиты
    Контрольная работа пополнение в коллекции 10.01.2010

    Рассмотрим реле с использованием полупроводниковых приборов (диодов и транзисторов). Эти реле обладают малым временем возврата и малыми погрешностями по току срабатывания, относятся к бесконтактным аппаратам, в которых используются усилительные свойства транзисторов. Принцип действия полупроводниковых реле сводится, как правило, к скачкообразному изменению тока в электрической цепи при воздействии на него, управляющего сигнала. К недостаткам таких реле следует отнести: наличие небольшого тока в цепи нагрузки в положении «выключено», в связи, с чем бесконтактные реле не могут быть использованы для полного разрыва цепи; большие разбросы характеристик, зависимость от температуры, нелинейность сопротивлений.

  • 645. Изучение контактов и магнитных пускателей
    Контрольная работа пополнение в коллекции 20.01.2010

    Главные контакты осуществляют замыкание и размыкание силовой цепи, снабжаются дугогасительными устройствами. Рассчитаны на длительное проведение номинального тока и на производство большого числа переключений.

  • 646. Изучение некоторых свойств жидкостей
    Контрольная работа пополнение в коллекции 04.12.2010

     

    1. Введение: жидкость окружает везде и всегда. Сами люди состоят из жидкости, вода дает нам жизнь, из воды мы вышли и к воде всегда возвращаемся. Но что же такое жидкость, с научной точки зрения жидкость это - одно из агрегатных состояний вещества. Основным свойством жидкости является, то, что она способна менять свою форму под действием механического воздействия. Жидкости бывают идеальные и реальные. Идеальные - невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью, а объёме под воздействием внешних сил. Реальные - вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений.
    2. Характеристика жидкого состояния: Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Жидкости бывают идеальные и реальные. Идеальные - невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью, а объёме под воздействием внешних сил. Реальные - вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений. Реальные жидкости могут быть ньютоновскими и неньютоновскими (бингамовскими).
    3. Ньютоновские и Неньютоновские жидкости: Если в движущейся жидкости её вязкость зависит только от её природы и температуры и не зависит от градиента скорости, то такие жидкости называют ньютоновскими. К ним относятся однородные жидкости. Когда жидкость неоднородна, например, состоит из крупных молекул, образующих сложные пространственные структуры, то при её течении вязкость зависит от градиента скорости. Такие жидкости называют неньютоновскими. Неньютоновские жидкости не поддаются законам обычных жидкостей, эти жидкости меняют свою плотность и вязкость при воздействии на них физической силой, причем не только механическим воздействие, но и даже звуковыми волнами. Если воздействовать механически на обычную жидкость то чем большее будет воздействие на нее, тем больше будет сдвиг между плоскостями жидкости, иными словами чем сильнее воздействовать на жидкость, тем быстрее она будет течь и менять свою форму. Если воздействовать на Неньютоновскую жидкость механическими усилиями, мы получим совершенно другой эффект, жидкость начнет принимать свойства твердых тел и вести себя как твердое тело, связь между молекулами жидкости будет усиливаться с увеличением силы воздействия на нее, в следствии мы столкнемся с физическим затруднением сдвинуть слои таких жидкостей. Вязкость неньютоновских жидкостей возрастает при уменьшение скорости тока жидкости
    4. Свойства жидкости: Как у всего сущего на земле, у жидкости есть свои свойства, такие как вязкость, плотность, текучесть, температура кипения и замерзания и многие другие. Данная работа больше основана на изучении вязкости жидкости, но стоит упомянуть и о других ее свойствах
    5. Вязкость - это способность оказывать сопротивление перемещению одной из части относительно другой - то есть как внутреннее трение.
    6. Плотность - физическая величина, определяемая для однородного вещества массой его единичного объёма. Плотность воды при температуре 4оС равна 1г/см3.
    7. Кипение - процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.
    8. Методика определения свойств жидкости
    9. определение вязкости: Капиллярные вискозиметры измеряют расход фиксированного объема жидкости через малое отверстие при контролируемой температуре. Скорость сдвига можно измерить примерно от нуля до 106 с-1, заменяя капиллярный диаметр и приложенное давление. Типы капиллярных вискозиметров и их режимы работы: Стеклянный капиллярный вискозиметр (ASTM D 445) - Жидкость проходит через отверстие устанавливаемого - диаметра под влиянием силы тяжести. Скорость сдвига - меньше чем 10 с-1. Кинематическая вязкость всех автомобильных масел измеряется капиллярными вискозиметрами. Капиллярный вискозиметр высокого давления (ASTM D 4624 и D 5481) - Фиксированный объем жидкости выдавливается через стеклянный капилляр диаметра под действием приложенного давления газа. Скорость сдвига может быть изменена до 106 с-1. Эта методика обычно используется, чтобы моделировать вязкость моторных масел в рабочих коренных подшипниках. Эта вязкость называется, вязкостью при высокой температуре и высоком сдвиге (HTHS) и измеряется при 150°C и 106 с-1. HTHS вязкость измеряется также имитатором конического подшипника, ASTM D 4683
    10. Образование свободной поверхности и поверхностное натяжение. Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую - газообразная (пар), и, возможно, другие газы, например, воздух. Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела - силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться. Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится "окружить" себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться. Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму - например, капли воды в невесомости. Маленькие объекты с плотностью, большей плотности жидкости, способны "плавать" на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности.
  • 647. Изучение основных правил работы с радиоизмерительными приборами (№23)
    Реферат пополнение в коллекции 09.12.2008

    Вывод: на этой работе мы ознакомились с основными характеристиками радиоизмерительных приборов, правилами их подключения к измеряемому объекту, методикой проведения измерений и оценкой их погрешностей.

  • 648. Изучение особенностей электрических свойств магнитных жидкостей
    Курсовой проект пополнение в коллекции 11.03.2007

    Р.Розенцвейг и Р.Кайзер (1969) определили относительную диэлектрическую проницаемость порошка из коллоидных частиц магнетита ??15 на частотах 400 Гц и 1 кГц. Н.И.Дюповкин и Д.В.Орлов (1983) исследовали магнетитовые магнитные жидкости на основе керосина, стабилизированные олеиновой кислотой, в диапазоне частот 102-7*104 Гц. При увеличении объёмной концентрации магнетита от 5 до 19.5% относительная диэлектрическая проницаемость монотонно возрастала от 3 до 9 на частоте 100 Гц. С увеличением частоты изменения электрического поля, создаваемого в межэлектродном пространстве ячейки с плоскопараллельными электродами, относительная диэлектрическая проницаемость плавно уменьшалась, причём наиболее резкий спад наблюдался в диапазоне частот 102-103 Гц. Измерения Г.М.Гордеева с соавторами (1983) относительной диэлектрической проницаемости близких по характеристикам магнитных жидкостей в диапазоне частот 105-107 Гц согласуются с данными Н.И.Дюповкина и Д.В.Орлова на верхней границе частот. Эта частотная зависимость диэлектрической проницаемости ? и тангенса угла диэлектрических потерь tg ? получена при комнатной температуре. Из полученных графиков видно, что относительная диэлектрическая проницаемость исследованных образцов практически постоянна в указанном диапазоне частот. Графики для керосина и олеиновой кислоты располагаются ниже значений ? для магнитных жидкостей.

  • 649. Изучение плоских диэлектрических волноводов для ТЕ поляризации
    Курсовой проект пополнение в коллекции 29.05.2008

    Заметим, что условия непрерывности H-составляющих на границах раздела эквивалентны условиям непрерывности производных от распределения E-составляющих поля на границах раздела слоев 1 и 2, 2 и 3.Пусть в рассматриваемой системе из трех слоев выполняется необходимое условие существования волноводного режима, т.е. . Физически это означает, что волны, бегущие в слое 2 могут испытывать полное внутреннее отражение от границ со слоями 1 и 3. Для решения уравнений рассмотрим величину . Если величина окажется отрицательной, то решение представляет собой экспоненту с действительным показателем. Если же эта величина положительна, то решение имеет осциллирующий характер и представляет собой гармоническую функцию или экспоненту с мнимым показателем. Рассмотрим свойства решений:

  • 650. Изучение процесса теплопередачи в кожухотрубчатом теплообменнике
    Контрольная работа пополнение в коллекции 23.09.2011

    ГорячаяХолоднаяНа входеНа выходеНа входеНа выходеТемпература (t), °C82,169,96,821,0Уровень поплавка в ротаметре7070теплопередача кожухотрубчатый теплообменник

  • 651. Изучение работы полевого транзистора
    Контрольная работа пополнение в коллекции 20.03.2007

    МДП-транзисторы могут быть как с нормально открытым, так и с нормально закрытым каналами. МДП-транзистор с нормально открытым, встроенным каналом показан на рис. 3 на примере МДП-транзистора с каналом n-типа. Транзистор выполнен на подложке p-типа. Сверху подложки методами диффузии формируются проводящий канал n-типа и две глубокие -области для создания омических контактов в области истока и стока. Область затвора представляет собой конденсатор, в котором одной обкладкой служит металлический электрод затвора, а другой канал полевого транзистора, диэлектриком является тонкий (толщина 0,1 0,2 мкм) слой оксида кремния. Если при нулевом напряжении затвора приложить между стоком и истоком напряжение, то через канал потечет ток, представляющий собой поток электронов. Через кристалл ток не пойдет, т.к. один из p-n-переходов находится под обратным напряжением. При подаче на затвор напряжения, отрицательного относительно истока, а, следовательно, и относительно кристалла, в канале создается поперечное электрическое поле, под влиянием которого электроны проводимости выталкиваются из канала в области стока и истока, а также в кристалл. Канал обедняется электронами, сопротивление его увеличивается и ток стока уменьшается. Чем больше отрицательное напряжение затвора, тем меньше этот ток. Такой режим работы транзистора называют режимом обеднения.

  • 652. Изучение реверсивного магнитного пускателя
    Контрольная работа пополнение в коллекции 16.01.2010

    4.1.3.2. Рассмотрим принцип включения двигателя ?Вперёд?. При нажатии кнопки SB2 ?Вперёд?, один из её контактов замыкается, и подаёт питание на магнитный пускатель КМ1. А другой контакт кнопки SB2, размыкает цепь магнитного пускателя КМ2, чтобы при одновременном нажатии кнопок SB2 и SB3 не замкнуть между собой приходящие фазы. Одновременно с замыканием главных контактов КМ1, включается его замыкающий блок-контакт, который шунтирует кнопку SB2, и размыкается блок-контакт в цепи катушки КМ2. Двигатель закрутится ?Вперёд?. Торможение осуществляется нажатием кнопки SB1, КМ1 обесточивается, а линейными контактами отключается электродвигатель от сети. Размыкающий блок-контакт КМ1 замыкается.

  • 653. Изучение регулировочных свойств электропривода с двигателем постоянного тока
    Контрольная работа пополнение в коллекции 20.01.2010

    2.1 После проверки ее преподавателем, сняли опытные данные и занесли в таблицу 2.1, при включенных SA1, SA2, SA3, SA4.

  • 654. Изучение свободных колебаний и измерение ускорения свободного падения
    Информация пополнение в коллекции 12.01.2009

    где x(t)- мгновенное значение колеблющейся величины в момент времени t, называемое отклонением, A- максимальное значение колеблющейся величины, называемой амплитудой колебаний, w0- круговая (циклическая) частота свободных колебаний и j = (w0 + j0) - фаза колебаний в момент времени t, j0 - начальная фаза колебаний. Фаза характерезует мгновенное состояние колебательной системы и определяется отклонением или смещением x и величиной времени t. Так как косинус и синус изменяются в пределах от +1 до 1, то x может принимать значения от +A до A. Определение состояния системы, совершающей гармонические колебания, повторяются через промежуток времени T, называемый периодом колебания. За промежуток времени T фаза колебания получает приращение 2П, т.е. (w0(t+T)+j0))-(w0t+j0) = 2П. Откуда

  • 655. Изучение свойств P-N-перехода различными методами
    Информация пополнение в коллекции 10.03.2007

    Следует отметить, что стремление обеих ветвей ВАХ в бесконечность не означает, что к диоду можно прикладывать сколь угодно высокое прямое напряжение в надежде пропустить через диод очень большой ток. С ростом тока p-n переход сильно нагревается и плавится - диод перегорает. При этом цепь размыкается и диод перестаёт проводить ток даже в одном направлении. Нельзя подвергать диод и воздействию чрезмерно высокого обратного напряжения. В этом случае p-n переход, не выдерживая слишком сильного электрического поля, будет пробит. При этом свойство односторонней проводимости диодом будет утеряно и он станет проводить ток одинаково хорошо в обоих направлениях. Поэтому любой диод характеризуется прежде всего двумя основными параметрами - максимально допустимым прямым током и максимально допустимым обратным напряжением . Диоды различных марок обладают различными значениями и . Обе эти характеристики диода, наряду со множеством других его характеристик, можно найти в соответствующих справочниках по полупроводниковым приборам. Зависимость прямого тока от напряжения, вообще говоря, не линейна. Однако эта нелинейность заметно проявляется только на начальном участке кривой, где величина прямого тока очень мала и с ростом напряжения изменяется очень медленно. На этом участке ВАХ диод можно считать закрытым. Но при достижении между электродами прямого напряжения определённой величины диод открывается и дальнейшая зависимость тока от напряжения становится практически линейной. Разные диоды обладают различной величиной открывающего напряжения У диодов, изготовленных на основе германия, оно гораздо меньше, чем у кремниевых диодов (рис. 3). Эта способность разных диодов открываться при различных, но вполне определённых для каждого типа диода, напряжениях позволяет использовать полупроводниковые диоды при решении многих технических задач. Так, например, использование диода в качестве датчика температуры или для контроля величины переменного тока желательно использовать германиевый диод. В тех же случаях, когда необходимо избавиться от слабых электрических сигналов, применять следует кремниевый диод. В большинстве же других случаев германиевый и кремниевый диоды вполне взаимозаменяемы.

  • 656. Изучение свойств емкостного уровнемера
    Контрольная работа пополнение в коллекции 28.02.2012
  • 657. Изучение скорости горения высокоэнергетических смесевых твердых топлив
    Дипломная работа пополнение в коллекции 28.08.2010

    Смесевые топлива без добавок обеспечивают удельные импульсы того же порядка, что и двухосновные; плотность смесевых топлив находится в пределах 1700-1800 кг/м3. Повышения удельного импульса можно добиться, если вводить определенное количество металлического горючего. В настоящее время применяются смесевые топлива, содержащие добавки алюминиевого порошка, что увеличивает теплотворную способность топлива. Правда, при этом в продуктах сгорания появляется многоатомная окись алюминия АI2О3, значительная часть которой конденсируется; тем не менее, имеет место выигрыш в удельном импульсе. Добавки алюминия до 5-15% повышают удельный импульс на 100-200 Н*с/кг. Разрабатываются и другие способы повышения удельного импульса твердых топлив, в частности, синтезированием горючих, в которых металлические элементы химически связаны с другими компонентами. Повышение удельного импульса возможно и применением более эффективных окислителей. Таким, в частности, является перхлорат лития LiCIO4. Повышение доли окислителя в твердых смесевых топливах до определенных пределов так же должно способствовать повышению удельного импульса.

  • 658. Изучение соединений резисторов и проверка законов Ома и Кирхгофа
    Контрольная работа пополнение в коллекции 15.01.2010

    Порядок выполнения работы.

    1. Собрать схему из последовательно соединённых резисторов.
    2. Включить цепь, установить необходимое напряжение. Измерить силу тока в цепи, падение напряжения на каждом участке при 2-х 3-х значениях сопротивлений реостата. Результаты записать в таблицу 1.
  • 659. Изучение структуры и химического состава границ зерен многокомпонентных систем на основе гексаферрита стронция
    Контрольная работа пополнение в коллекции 19.06.2010

    В данной работе рассматриваются методологические подходы к изучению микроструктуры гексаферритов стронция, морфологии зерен, характера распределения микродобавок и особенностей их химического и электронного состояния на поверхности кристаллитов и в объеме. Для получения этой информации применены высокочувствительные спектральные методы анализа поверхностного состояния твердого тела (РФЭС, Оже- и ИК-спектроскопии) в сочетании со структурными методами изучения строения веществ (РФА, СЭМ, РМА). Указанными выше спектральными методами исследовали поверхность свежеприготовленных сколов различных образцов гексаферритов стронция. Дополнительные сведения о характере распределения микроэлементов в образцах и их химическом состоянии получали из сравнительного анализа Оже- и РФЭ-спектров, записанных до и после травления поверхности сколов ионами аргона. ИК-спектры записывали методом диффузного отражения от исходных порошкообразных образцов гексаферритов и тонко диспергированных поверхностных слоев сколов спеченных образцов, содержащих микродобавки. Важно было установить, существует ли различие в ИК-спектрах исходного образца (без добавок) и поверхностного слоя зерен спеченного образца, в котором предположительно находятся микродобавки. Такое сравнительное исследование необходимо в связи со сложностью трактовки ИК-спектров твердых растворов сложнооксидных систем, для которых отсутствует удовлетворительная теоретическая база, поскольку возможно взаимодействие колебаний, появление смешанных колебаний, искажение ближайшего координационного окружения ионов при легировании другими ионами. В случае избыточного относительно стехиометрического содержания стронция в приповерхностном слое зерен, а также в присутствии легирующих добавок (бора, кремния, кальция и др.) возможны локальные деформации кристаллической решетки, изменения межатомных расстояний и электронной конфигурации катионов железа, что приводит к изменению характеристических частот колебаний связи FeO. Имеются данные о том, что наиболее высокая степень ковалентности связи FeO характерна для стехиометрического соотношения SrO:Fe2O3 = 1:6. Отклонение от этого соотношения в любую сторону повышает степень ионности связи FeO.

  • 660. Изучение счетчика Гейгера-Мюллера
    Контрольная работа пополнение в коллекции 02.12.2010

    Цель работы: Ознакомление с газоразрядными детекторами ядерных излучений (ионизационные камеры, пропорциональные счетчики, счетчики Гейгера-Мюллера) и физикой процессов, происходящих в счетчиках при регистрации ядерных частиц. Исследование счетчика Гейгера-Мюллера.