3. Представление

Вид материалаОбзор

Содержание


22.4. Сравнение систем, основанных на правилах и прецедентах
Однако нас больше интересуют различия между этими двумя классами систем. Они суммированы в работе [Kolodner, 1993].
Рекомендуемая литература
Подобный материал:
1   ...   89   90   91   92   93   94   95   96   ...   110
^

22.4. Сравнение систем, основанных на правилах и прецедентах

Существует достаточно сильная аналогия между системами, основанными на правилах и прецедентах. И те и другие необходимо каким-то образом индексировать, чтобы обеспечить эффективное извлечение. И те и другие выбираются в результате сопоставления, причем выбор и ранжирование производятся на основании фоновых знаний, хранящихся в каких-либо дополнительных структурах, например в виде фреймов (в MYCIN аналогичную роль выполняют таблицы знаний).

^

Однако нас больше интересуют различия между этими двумя классами систем. Они суммированы в работе [Kolodner, 1993].

Правила являются образцами — содержат переменные и не описывают непосредственно решение, а прецеденты являются константами.

Правило выбирается на основе точного сопоставления антецедента и данных в рабочей памяти. Прецедент выбирается на основе частичного сопоставления, причем учитываются еще и знания о сущности характеристик, по которым выполняется сопоставление.

Применение правил организовано в виде итерационного цикла — последовательности шагов, приводящих к решению. Прецедент можно рассматривать как приближенный вариант полного решения. Иногда, однако, появляется возможность итеративно проводить аналогию с разными прецедентами, которые "подходят" для различных частей проблемы.

Построение суждений на основе прецедентов поддерживает и другую стратегию решения проблем, которую мы назвали "извлечение и адаптация". Эта стратегия существенно отличается и от эвристической классификации, и от стратегии "предложение и проверка", как, впрочем, и от всех остальных, рассмотренных в главах 11-15. В новом подходе есть нечто очень близкое нам интуитивно, поскольку весьма напоминает наш повседневный опыт. Даже на первый взгляд ясно, как привлекательно вспомнить аналогичный случай, принесший успех в прошлом, и поступить так же. Редко кто из нас затрудняет себя "нудными рассуждениями", когда можно быстро извлечь готовое решение.

Нужно, однако, предостеречь тех, кто считает, будто использование прецедентов поможет нам избавиться от утомительной работы по извлечению знаний и построению обоснованного логического заключения.

Человеческая память подвержена сильному эмоциональному влиянию — нам свойственно помнить успехи и забывать о неудачах. Прошлые успехи всегда предстают в розовом свете, а потому во многих случаях нельзя рассматривать прецеденты как достаточно надежную основу для правильных выводов. Есть и еще одно существенное соображение, которое не позволяет нам безоговорочно довериться прецедентам, — масштабность. Можно говорить об анализе десятков прецедентов, но когда масштаб решаемой проблемы потребует сопоставления сотен и тысяч прецедентов, существующему механизму анализа задача окажется не по плечу.

Но, тем не менее, мы можем оптимистически смотреть на перспективы систем, использующих в ходе рассуждений прецеденты. Это, без сомнения, один из способов использовать прошлый опыт, и будет весьма интересно проследить, как исследователи и инженеры смогут воспользоваться потенциальными достоинствами этой технологии

^

Рекомендуемая литература

Единственной книгой, в которой достаточно полно рассмотрена технология использования прецедентов в системах искусственного интеллекта, является [Kolodner, 1993]. В перечень кратких обзорных статей, которые можно рекомендовать для первого знакомства, я бы включил [Blade, 1991], [Harmon, 1992], [Kolodner, 1992] и [Watson and Marir, 1994]. Обзор инструментальных средств, предназначенных для работы с базами данных прецедентов, представлен в работе [Harmon and Hall, 1993].

Описания действующих систем, основанных на прецедентах, читатель найдет в работах [Acorn and Walden, 1992], [Allen, 1994], [Nguyen et al, 1993], [Hislop andPracht, 1994],-[Barren etal, 1993].

ГЛАВА 23. Гибридные системы

23.1. Методы обучения в системе ODYSSEUS

23.2. Системы ODYSSEUS и MINERVA

23.2.1. Оболочка экспертной системы MINERVA

23.2.2. Обучение в системе ODYSSEUS

23.3. Использование прецедентов для обработки исключений

23.4. Гибридный символический подход и нейронные сети

23.4.1. Нейронные сети

23.4.2. SCALIRгибридная система для извлечения правовой информации

23.4.3. Организация обучения в системе SCALIR

23.5. Будущее гибридных систем

Рекомендуемая литература

Упражнения