01. 01. 01 – математический анализ *
Вид материала | Документы |
- Методические рекомендации по использованию учебных пособий «Алгебра и математический, 181.08kb.
- Примерная программа наименование дисциплины Математический анализ, 308.64kb.
- Программа курса "Математический анализ", 31.49kb.
- Рабочая учебная программа дисциплины (модуля) Математический анализ, 233.89kb.
- Программа по дисциплине математический анализ, 133.35kb.
- Рабочая программа по дисциплине с 1 Математический анализ, 302.06kb.
- Утверждаю, 123.18kb.
- Рабочая программа учебной дисциплины «Математический анализ» Направление подготовки, 275.11kb.
- Рабочая программа по дисциплине б 1математика. Математический анализ шифр и название, 259.57kb.
- Рабочая программа дисциплины «Математический анализ ii» Направление, 132.24kb.
01.01.01 – математический анализ *
* Приказ Высшей аттестационной комиссии Республики Беларусь от 23 августа 2007 г. № 138
Цели и задачи программы-минимум.
В основу программы-минимум по специальности «01.01.01-математический анализ» положены курсы дифференциального и интегрального исчисления, теории функций действительной переменной, теории функций комплексной переменной и функционального анализа.
Перечисленные курсы в большем или меньшем объеме читаются на механико-математических и математических факультетах белорусских университетов. По сравнению с типовыми программами по этим курсам предлагаемая программа-минимум для аспирантского экзамена является более насыщенной и трудоемкой в смысле усвоения.
Изучение материалов, изложенных в программе-минимум, имеет своей целью глубокое ознакомление с фундаментальными достижениями по перечисленным разделам математического анализа, лежащими в основе современных исследований в этой области.
^ Требования к уровню знаний аспиранта
Основные требования к аспиранту, сдающему кандидатский экзамен по специальности 01.01.01-математический анализ, состоят в следующем.
Он должен свободно владеть основными методами дифференциального и интегрального исчисления, теории функций и функционального анализа; знать основные определения и факты, а также идеи доказательства центральных теорем. Наряду со знанием основных понятий и теорем экзаменующийся по программе-минимум должен продемонстрировать умение подробно проводить доказательства, решать упражнения и приводить необходимые примеры и контрпримеры.
Предполагается наличие математического университетского образования и высокого уровня знаний других базовых и смежных курсов алгебры, геометрии и топологии, теории обыкновенных дифференциальных уравнений и уравнений с частными производными.
Содержание программы
^ I. Дифференциальное и интегральное исчисление.
Основные понятия теории множеств. Множества и операции над ними. Декартово произведение множеств. Частично, линейно и вполне упорядоченные множества.
Бинарные отношения. Понятие отображения (функции) и сопутствующих понятий: график, область определения и область значений, образы и прообразы, полный прообраз множества. Композиция отображений, сужение функции. Сюръекция, инъекция, биекция, обратное отображение.
Понятие о мощности множества. Отношение эквивалентности, классы смежности, фактор-пространство.
^ Действительные числа. Аксиоматика множества действительных чисел и его модели. Мощность подмножеств числовой прямой. Теорема Кантора о несчетности континуума. Множества, ограниченные сверху и снизу. Точные верхняя и нижняя границы множества. Теорема Дедекинда.
^ Предел последовательности. Общие свойства предела, критерий Коши. Сходимость монотонных последовательностей, число Эйлера. Верхний и нижний пределы.
^ Числовые ряды. Сходящиеся и расходящиеся ряды, сумма ряда. Необходимое условие сходимости ряда. Абсолютная и условная сходимость. Критерий Коши. Критерий сходимости положительных рядов, признаки сравнения. Интегральный признак Коши. Условная сходимость, признаки Абеля и Дирихле. Cумма перестановки абсолютно сходящегося ряда. Теорема Римана о перестановках. Теорема Коши о произведении рядов.
^ Различные формы полноты множества действительных чисел. Лемма Кантора. Лемма Бореля-Лебега о покрытиях отрезка интервалами. Предельная точка множества, лемма Больцано-Вейерштрасса.
^ Предел и непрерывность функции. Общие свойства предела функции. Односторонние пределы монотонной функции.
Непрерывность функции в точке. Локальные свойства непрерывных функций. Операции над непрерывными функциями. Классификация разрывов функции.
^ Глобальные свойства непрерывных функций на отрезке. Теоремы Вейерштрасса, теоремы Больцано-Коши. Равномерная непрерывность, теорема Кантора. Критерий глобальной непрерывности монотонной функции и критерий взаимной однозначности непрерывной функции на отрезке.
^ Дифференцируемые функции. Производная и диффернциал. Производные элементарных функций. Правила дифференцирования. Основные теоремы о дифференцируемых функциях (Ферма, Ролля, Лагранжа и Коши). Правила Лопиталя.
Формула Тейлора, различные формы остатка (Пеано, Лагранжа, Коши). Сходимость разложений Тейлора элементарных функций.
Монотонность в терминах производной. Выпуклые функции и условия выпуклости в терминах производных. Условия экстремума. Классические неравенства (Йенсена, Гельдера, Минковского).
^ Интегральное исчисление. Первообразная и неопределенный интеграл. Основные методы отыскания первообразных.
Определение интеграла Римана. Критерий интегрируемости. Классы интегрируемых функций. Свойства определенного интеграла. Формула Ньютона-Лейбница, интегрирование по частям и замена переменной. Формула Тейлора с остатком в виде интеграла.
^ Несобственные интегралы. Виды особенностей. Критерий Коши сходимости несобственного интеграла. Абсолютная и условная сходимость. Признаки сходимости (сравнения и Абеля-Дирихле). Главное значение по Коши.
^ Дифференцируемые функции многих переменных. Производная, частные производные функции и их связь между ними. Достаточное условие дифференцируемости. Производная по направлению, градиент. Частные производные высших порядков, теорема Шварца. Формула Тейлора с остатками Пеано и Лагранжа, интегральная форма остатка. Условия экстремума.
Дифференцируемые векторные функции. Матрица Якоби. Производная композиции. Теоремы об обратной и о неявной функции.
^ Функциональные ряды и последовательности. Равномерная сходимость, критерий Коши. Перестановка предельных переходов. Признаки Вейерштрасса, Абеля и Дирихле для равномерной сходимости. Функциональные свойства суммы ряда. Степенные ряды, радиус сходимости, формула Коши-Адамара. Теорема Абеля.
Пространство непрерывных функций: векторная структура, норма, полнота. Теорема Вейерштрасса о плотности алгебраических полиномов в пространстве непрерывных функций.
Мера Жордана в . Внутренняя и внешняя меры Жордана ограниченного множества, измеримые множества, мера Жордана. Критерии измеримости. Свойства меры Жордана (монотонность, аддитивность, субаддитивность). Мера открытых и замкнутых множеств.
Интеграл Римана в . Определение интеграла Римана на множестве, измеримом по Жордану. Критерии интегрируемости. Классы интегрируемых функций. Критерий Лебега интегрируемости по Риману. Свойства интеграла Римана. Мера декартова произведения измеримых множеств. Теорема Фубини и ее следствия: Замена переменной в интеграле Римана.
^ Функции ограниченной вариации и интеграл Стилтьеса. Функции ограниченной вариации и их свойства, аддитивность и непрерывность вариации. Теорема Жордана.
Определение интеграла Стилтьеса и его свойства. Существование интеграла Стилтьеса, оценка интеграла. Формулы для вычисления с помощью интегралов Римана
^ Криволинейные интегралы. Жордановы кривые и их параметризации. Описание класса параметризаций. Спрямляемость и длина кривой. Критерий Жордана спрямляемости. Гладкая кривая и формулы для вычисления ее длины. Натуральная параметризация и ее существование.
Криволинейный интеграл 1-го рода вдоль спрямляемой жордановой кривой, формулы для вычисления. Ориентация жордановой кривой. Криволинейный интеграл 2-го рода вдоль ориентированной спрямляемой жордановой кривой.
^ Формула Грина. Необходимое условие существования первообразной. Теорема об эквивалентности существования первообразной и независимости криволинейного интеграла от пути. Нахождение первообразной с помощью криволинейного интеграла.
Ориентация плоского контура. Формула Грина. Условия независимости криволинейного интеграла от пути. Вычисление площадей с помощью криволинейного интеграла.
^ Поверхностные интегралы. Площадь гладкой поверхности. Ориентация поверхности. Поверхностные интегралы 1-го и 2-го рода. Формулы Стокса и Гаусса-Остроградского. Скалярные и векторные поля, основные дифференциальные операторы векторного анализа.
^ Интегралы от параметра. Непрерывность и дифференцируемость интегралов, зависящих от параметра. Гамма- и бета-функции Эйлера, их функциональные свойства и некоторые соотношения для них. Асимптотическая формула Стирлинга.
^ II. Теория функций действительного переменного.
Мера Лебега. Мера, лебегово продолжение меры. Свойства меры Лебега (монотонность, конечная аддитивность, субаддитивность). Счетная аддитивность и непрерывность меры Лебега, измеримость счетных объединений и пересечений. Мера Лебега в евклидовых пространствах. Меры Лебега-Стилтьеса на прямой.
^ Измеримые функции. Измеримые функции и их свойства, измеримость предела последовательности измеримых функций. Сходимость по мере и почти всюду. Теоремы Егорова и Лузина.
^ Интеграл Лебега. Интеграл Лебега и его свойства. Счетная аддитивность и абсолютная непрерывность интеграла. Предельный переход под знаком интеграла Лебега, теоремы Лебега, Фату, Леви. Сравнение с интегралом Римана. Прямые произведения мер. Теорема Фубини. Меры, порожденные суммируемыми функциями.
^ Неопределенный интеграл Лебега. Теорема Лебега о производной монотонной функции. Абсолютно непрерывные функции. Производная неопределенного интеграла Лебега. Восстановление функции по ее производной. Формула Ньютона-Лейбница для суммируемых функций.
Интеграл Лебега как функция множества. Теорема Радона-Никодима. Интеграл Лебега-Стилтьеса.
^ Анализ Фурье. Пространства . Ортогональные системы функций и ряды Фурье. Действительная и комплексная тригонометрические системы. Интегральное представление для частных сумм. Лемма Римана-Лебега, принцип локализации. Условия сходимости ряда Фурье в точке и равномерной сходимости.
Теорема Фейера. Полнота и замкнутость тригонометрической системы.
Преобразование Фурье и его свойства. Теорема Римана-Лебега. Взаимодействие операций анализа и преобразования Фурье. Свертка и ее преобразование Фурье. Теорема Планшереля.
^ III. Теория функций комплексного переменного.
Дифференцируемость. Множество комплексных чисел. Производная функции комплексного переменного, дифференцируемость. Уравнения Коши-Римана и условия дифференцируемости. Аналитичность в точке и на множестве, целые функции. Конформные отображения, геометрический смысл аргумента производной. Геометрический смысл модуля производной. Элементарные аналитические функции.
^ Интегральные представления аналитических функций. Интегральная теорема Коши. Интегральная Формула Коши. Теорема о среднем. Принцип максимума модуля. Лемма Шварца. Интеграл типа Коши. Формулы Сохоцкого.
^ Степенные ряды в комплексной плоскости. Лемма Абеля. Радиус и круг сходимости. Формула Коши-Адамара. Аналитичность суммы степенного ряда. Разложение элементарных функций в ряды Тейлора. Равномерно сходящиеся ряды аналитических функций, теоремы Вейерштрасса. Разложение аналитических функций в ряды Тейлора и Лорана, неравенство Коши. Нули аналитических функций. Теорема единственности.
^ Гармонические функции. Оператор Лапласа, гармонические функции. Формула Шварца. Формула Пуассона. Сопряженные гармонические функции. Восстановление сопряженной гармонической функции.
^ Особые точки. Изолированные особые точки однозначного характера. Вычеты, теорема Коши о вычетах. Принцип аргумента, теорема Руше.
Целые и мероморфные функции. Рост целой функции, порядок и тип. Теорема Вейерштрасса о целых функциях с заданными нулями; разложение целой функции в бесконечное произведение. Случай целых функций конечного порядка, теорема Адамара. Теорема Миттаг-Леффлера о мероморфных функциях с заданными полюсами и главными частями
^ Конформные отображения. Конформные отображения, осуществляемые элементарными функциями. Принцип сохранения области. Критерий однолистности. Теорема Римана. Теорема о соответствии границ при конформном отображении.
^ Аналитическое продолжение. Аналитическое продолжение и полная аналитическая функция в смысле Вейерштрасса. Понятие римановой поверхности. Продолжение вдоль кривой. Теорема о монодромии. Принцип симметрии. Отображение многоугольников, формула Кристоффеля-Шварца
^ IV. Функциональный анализ.
Топологические пространства. Основные понятия общей топологии (топология, внутренние и предельные точки множества, открытые и замкнутые множества, замыкание и граница). Предел и непрерывность функции на топологическом пространстве.
Компактные и связные множества и их непрерывные образы. Глобальный критерий непрерывности.
Линейные топологические пространства, счетно-нормированные пространства.
^ Метрические пространства. Метрическое пространство и его топология. Ограниченные множества. Полнота, теорема Кантора о вложенных замкнутых шарах. Пополнение метрических пространств. Теорема Кантора о равномерной непрерывности. Принцип сжимающих отображений и его приложения.
Нигде не плотные множества. Категории Бэра (множества 1-й и 2-й категории). Теорема Бэра о категориях. Сепарабельность.
^ Нормированные пространства. Норма, линейное нормированное пространство. Метрика в линейном нормированном пространстве. -мерное евклидово пространство, критерий Гейне-Бореля компактности в нем.
Компактные и предкомпактные множества в метрическом пространстве, необходимые условия. -сети и вполне ограниченные множества. Критерий компактности Хаусдорфа. Свойство Больцано-Вейерштрасса (счетная компактность) и его связь с предкомпактностью.
^ Конечномерность и компактность. Конечномерные линейные нормированные пространства. Эквивалентность норм. Замкнутость конечномерных подпространств. Теорема Бореля о существовании элемента наилучшего приближения в конечномерном пространстве. Лемма Ф.Рисса о "почти перпендикуляре", теорема Ф.Рисса.
^ Пространства со скалярным произведением. Скалярное произведение. Евклидовы и унитарные пространства. Гильбертовы пространства. Критерий элемента наилучшего приближения подпространством. Ортогональное дополнение и его свойства, теорема о проекции.
^ Ортонормированные системы. Ортогонализация Грама-Шмидта. Полные и замкнутые ортонормированные системы. Ряды Фурье. Тождество Бесселя и неравенство Бесселя, экстремальное свойство сумм Фурье. Сходимость рядов Фурье и равенство Парсеваля. Теорема Ф.Рисса-Фишера.
^ Теория линейных операторов. Ограниченные линейные операторы, условия ограниченности. Норма оператора и формулы для ее вычисления. Расширение оператора по непрерывности. Пространство линейных ограниченных операторов.
Теорема Банаха-Штейнгауза. Условия сходимости последовательности операторов.
Обратимые операторы, теоремы об обратных операторах. Открытость множества обратимых операторов.
Теорема Банаха о гомеоморфизме. Принцип открытых отображений. Замкнутые операторы, связь замкнутости и непрерывности. Теорема Банаха о замкнутом графике.
^ Линейные функционалы. Линейные функционалы и гиперплоскости. Выпуклые функционалы и теорема Хана-Банаха в линейных топологических пространствах. Теорема Хана-Банаха в линейных нормированных пространствах (действительный и комплексный случаи) и следствия из нее.
Сопряженное пространство и его свойства. Общий вид функционалов в в гильбертовом пространстве. Рефлексивные пространства.
Сопряженные операторы. Ограниченность и норма сопряженного оператора.
^ Слабые топологии. Слабая сходимость функционалов и порождающая топология. Условия слабой сходимости функционалов. Слабое свойство Больцано-Вейерштрасса.
Слабая сходимость элементов линейного нормированного пространства и порождающая топология. Условия слабой сходимости элементов. Слабая сходимость в гильбертовом пространстве.
^ Компактные операторы. Компактные операторы. Замкнутость класса компактных операторов. Область значений компактного оператора. Компактность сопряженного оператора.
Выпуклость. Функционал Минковского и его свойства. Теорема об отделяющей гиперплоскости. Опорный функционал и опорная гиперплоскость. Теорема о существовании опорной гиперплоскости в точках границы. Крайние точки, крайние подмножества и их свойства. Теорема Крейна-Мильмана.
Спектр. Регулярные значения оператора, резольвента. Спектр. Компактность спектра, открытость множества регулярных значений. Оценка нормы резольвенты. Тождество Гильберта. Непрерывность и аналитичность резольвенты на множестве регулярных значений. Непустота спектра ограниченного оператора.
^ Самосопряженные операторы в гильбертовом пространстве. Самосопряженный оператор, его эрмитова и квадратичная формы. Свойства собственных чисел и векторов самосопряженного оператора. Вычисление нормы и максимального собственного числа самосопряженного оператора с помощью квадратичной формы. Теорема Гильберта-Шмидта.
^ Дифференциальное исчисление в пространствах Банаха. Производная и дифференциал Фреше. Производная по направлению (производная Гато), производная по подпространству. Теоремы об обратной и о неявной функции.
^ Обобщенные функции. Пространство основных функций. Пространство обобщенных функций медленного роста. Регулярные обобщенные функции, меры, функция Дирака. Операции анализа для обобщенных функций (сдвиги, растяжения, умножение, дифференцирование, свертки, преобразование Фурье).
^ СПИСОК ЛИТЕРАТУРЫ
Архипов Г.И., Садовничий В.А., Чубариков В.Н., Лекции по математическому анализу, М.: Высшая школа, 2000.
- Антоневич А.Б., Радыно Я.В. Функциональный анализ и интегральные уравнения. Минск: «Издательство БГУ», 2003.
- Владимиров В.С. Обобщенные функции в математической физике. М.: «Наука», 1979.
- Голузин Г.М. Геометрическая теория функций комплексного переменного. М.: «Наука», 1966.
- Зверович Э. И. Вещественный и комплексный анализ. Ч. 1-6. Минск: «Издательство БГУ», 2003.
- Зорич В.А., Математический анализ. Т. 1-2, М.: Наука, 1981.
- Кириллов А. А., Гвишиани А. Д. Теоремы и задачи функционального анализа. М.: «Наука», 1979.
- Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: «Наука», 1976.
- Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: «Наука», 1973.
- Маркушевич А.И. Теория аналитических функций . Т. 1-2. М.: «Наука», 1967-1968.
- Натансон И.П. Теория функций вещественной переменной. М.: «Наука», 1974.
- Никольский С.М. Курс математического анализа. Т. 1-2. М.: «Наука», 1975.
- Привалов И.И. Введение в теорию функций комплексного переменного. М.: «Наука», 1977.
- Рудин У. Основы математического анализа. М.: «Мир», 1976.
- Рудин У. Функциональный анализ. М.: «Мир», 1975.
- Титчмарш Е. Теория функций. М.: «Наука», 198