Ы, включают методы обработки данных многих ранее существовавших автоматизированных систем (АС), с другой обладают спецификой в организации и обработке данных
Вид материала | Документы |
Содержание4 Особенности организации данных в ГИС 4.1. Определение положения точек на поверхности Земли Плоские декартовы координаты Плоские полярные координаты |
- Методы анализа данных, 17.8kb.
- Методика определения актуальных угроз безопасности персональных данных при их обработке, 175.98kb.
- Понятия о базах данных и системах управления ими. Классификация баз данных. Основные, 222.31kb.
- Анализ и оценка дисциплин обслуживания требований (запросов) с учетом их приоритетов, 20.53kb.
- Программа дисциплины «Методы обработки экспериментальных данных», 318.77kb.
- «Прикладная информатика (по областям)», 1362.72kb.
- Методические указания к курсовому проектированию по курсу "Базы данных" Составитель:, 602.97kb.
- Концепция баз данных уже давно стала определяющим фактором при создании эффективных, 293.58kb.
- Доклад Тема: «Информационные технологии», 58.36kb.
- Рабочей программы дисциплины Структуры и алгоритмы обработки данных по направлению, 21.62kb.
4 Особенности организации данных в ГИС
ГИС как системы обработки пространственно-временной информации относятся к классу информационных систем. Они имеют общие, присущие всему классу, и индивидуальные, присущие только ГИС, свойства. К особенностям ГИС следует отнести наличие больших объемов хранимой в них информации. Кроме того, они отличаются специфичностью организации и структурирования моделей данных.
ГИС характеризуются разнообразием графических данных со специфическими их частями и связями. В частности, карта может быть рассмотрена как двухмерная аналоговая модель, отображающая трехмерную поверхность.
Используя процедуры абстракции, определим более общую модель геоинформационных данных как абстракцию данных, которые содержатся на земной поверхности. Такой подход требует выделения основных типов данных и их многочисленных связей.
В разд. 3 в качестве основного критерия анализа взаимосвязи частей и построения базовых моделей данных использовалась структура. Этот же подход приемлем для построения моделей геоинформационных данных.
Напомним, что одной из основных моделей в первых ГИС был набор имен и характеристик в сочетании со множеством именованных данных, местонахождение которых задается координатами. Эта простая модель не содержала каких-либо семантических данных, помогающих пользователю при работе с базами данных. Дальнейшие исследования привели к необходимости развития и усложнения такой модели. Другими словами, возникла потребность создания общей модели данных ГИС и ее основных частей для оптимальной обработки в базах данных и эффективного описания объектов.
Данные реального мира, отображаемые в ГИС, можно рассматривать с учетом трех аспектов: пространственного, временного и тематического.
Пространственный аспект связан с определением местоположения, временной - с изменениями объекта или процесса с течением времени, в частности от одного временного среза до другого. Примером временных данных служат результаты переписи населения. Тематический аспект обусловлен выделением одних признаков объекта и исключением из рассмотрения других.
Все измеримые параметры моделей геоинформационных данных подпадают под одну из этих характеристик: место, время, предмет. Затруднительно исчерпывающим образом описать сразу все три эти характеристики. Поэтому при построении моделей данных на основе наблюдений явлений реального мира один параметр считают "неизменным", изменения другого "задаются" и при этом "измеряют" изменения третьего параметра.
Зафиксировав географическое положение и изменяя время, можно получить временные ряды данных. Зафиксировав время и изменяя географическое положение, получаем данные по профилям.
В большинстве технологий ГИС для определения места используют один класс данных - координаты, для определения параметров времени и тематической направленности - другой класс данных -атрибут ы.
Однако прежде чем рассмотреть два основных класса данных в ГИС, необходимо рассмотреть методы определения местоположения точек объектов на поверхности Земли.
4.1. Определение положения точек на поверхности Земли
Координатные данные, составляющие один из основных классов геоинформационных данных, используют для указания местоположения на земной поверхности.
Поверхность Земли имеет сложную форму. При общей площади ее поверхности 510 млн. км2 71 % приходится на дно морей и океанов и 29 % - на сушу. Это дает основание считать, что земная поверхность состоит из двух резко отличающихся морфологических элементов - материков и океанов.
С учетом того что поверхность вод Мирового океана занимает почти 3/4 поверхности Земли, за общую фигуру земли принимают тело, ограниченное поверхностью воды океанов. Такая поверхность называется уровненной. Потенциал силы тяжести на ней имеет одно и то же значение. Другими словами, эта поверхность везде перпендикулярна отвесной линии, т.е. везде горизонтальна.
Можно построить семейство горизонтальных поверхностей. Поверхность, которая совпадает с поверхностью Мирового океана в состоянии покоя и равновесия и продолжена под материками, образует фигуру, принятую в геодезии за общую фигуру Земли, называемую геоид.
С помощью методов дистанционного зондирования удалось установить, что Земля имеет грушевидную форму. В качестве математической модели Земли применяют эллипсоид, который в геодезии принято называть референц-эллипсоидом. В СССР до 1946 г. использовался эллипсоид, полученный Ф. Бесселем. В 1946 г. для обязательного использования был введен эллипсоид, вычисленный в ЦНИИГАиК в 1940 г. под руководством Ф.Н. Красовского при участии А. А. Изотова.
Для отображения положения точек поверхности на плоскости используют различные математические модели поверхности и различные системы координат. На практике применяют два основных типа координат: плоские и сферические Реже применяют криволинейные или полярные.
Выбор системы координат зависит от размеров исследуемых участков поверхности, как следствие, от влияния кривизны Земли. При изображении небольших участков Земли часть уровненной поверхности можно принять за плоскость. Такими участками будут участки до 20 км длиной и площадью до 400 км2.
В этих случаях применимы плоские координаты. Плоские декартовы координаты определяются заданием двух осей. При этом обычно координата Х указывает на восток, Y - на север. Задают масштабные отрезки. Упорядоченная пара (X, Y) определит положение точки в заданной системе.
Плоские полярные координаты используют расстояние от начала координат (r) и угол () от фиксированного направления. Направление обычно фиксируется на север, а угол отсчитывается по часовой стрелке от него. Полярные координаты удобны при проведении измерений от какой-либо заданной точки, например когда используются данные таких источников, как радарные съемки.
При необходимости учета кривизны Земли применяют пространственные системы координат.
Для определения географической системы координат (разновидности сферической системы) введем следующие понятия:
• плоскость земного экватора - проходит через центр Земли перпендикулярно к оси вращения;
• плоскость географического (астрономического) меридиана - проходит через ось вращения Земли и отвесную линию в точке земной поверхности;
• меридиан — линия пересечения плоскостей географических меридианов с земной поверхностью;
• параллель - линия, образованная пересечением плоскости, параллельной плоскости земного экватора, с поверхностью Земли. Положение точки определяется широтой ( (р) и долготой ( X). Широта - это угол между точкой и экватором вдоль меридиана '. Она изменяется от -90 ° (южный полюс) до +90 ° (северный полюс).
Долгота - это угол в плоскости экватора между меридианом точки и главным (нулевым) меридианом, проходящим через Гринвич (Англия). Она изменяется от-180° (западная долгота) до+180° (восточная долгота).
Основными понятиями этой системы координат являются: меридиан - линия постоянной долготы; параллель - линия постоянной широты;
большой круг - воображаемый круг на земной поверхности, образованный плоскостью, проходящей через центр земного шара;
малый круг - воображаемый круг на земной поверхности, образованный плоскостью, не проходящей через центр земного шара.
Рассмотренные системы координат носят в большей степени теоретический характер. На практике используют более широкий набор систем координат [2]: геоцентрические, топоцентрические, полярные геодезические, эллиптические и др.