Систематический курс 11 класс Для классов гуманитарного профиля Допущено

Вид материалаУчебник

Содержание


Системно-исторический анализ
Системная методология
Системный подход
Виды системного анализа
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   13
«сис­темный подход», с позиций которого в различных областях науки ведется исследование самых разнообразных объектов и явлений. Наиболее полно суть системного подхода сфор­мулирована В. Г. Афанасьевым, выделившим следующие аспекты этого подхода:
  • системно-элементный — получение ответа на вопрос, из чего (каких компонентов) образована система;
  • системно-структурный — раскрытие внутренней орга­низации системы, способа взаимодействия образующих ее элементов;
  • системно-функциональный — определение функций, выполняемых системой и образующими ее компонента­ми;
  • системно-комуникационный — раскрытие взаимосвязи данной системы с другими, как по горизонтали, так и по вертикали, иными словами, выявление входов и выходов системы;
  • системно-интегративный — определение механизмов, факторов сохранения, совершенствования и развития си­стемы;
  • системно-исторический — получение ответа, как воз­никла система, какие этапы в своем развитии проходила, каковы ее перспективы.

Каждый из этих аспектов определяет один из видов ана­лиза системы.

Пример. Рассмотрим электронные таблицы (ЭТ) как систему. Нас интересует в данном случае не то, что изображено на эк­ране дисплея, когда вы производите расчеты с помощью электронных таблиц, а ЭТ как программное средство. В рамках системно-элементного анализа мы можем вы­делить основные элементы системы. Для ЭТ основными элементами являются отдельные программные модули. Системообразующий элемент — головной модуль (для электронных таблиц Excel, например, это excel.exe), ко­торый на время работы размещается в оперативной памя­ти и организует вызов других модулей по мере их необхо­димости.

В рамках системно-структурного анализа мы можем выделить взаимосвязи между модулями ЭТ. Поскольку отдельные программные модули представляют собой процедуры, написанные на каком-либо языке програм­мирования, то связи между модулями задаются форма­льными параметрами, определенными в заголовках про­цедур, глобальными переменными и ссылками на другие процедуры.

В рамках системно-функционального анализа мы можем определить назначение и функции ЭТ, их возможности. К основным функциям большинства ЭТ относятся: вычис­ления по формулам, автозаполнение, форматирование, графическое представление данных, сортировка и филь­трация данных, подбор параметров и многое другое. В рамках системно-коммуникационного анализа необ­ходимо выделить связи с внешней средой, каковой вы­ступают операционная система и другие программные средства, с одной стороны, пользователь — с другой. Связь с пользователем определяется теми возможностя­ми, которые заложены в пользовательском интерфейсе. Например, при работе с Excel пользователь может внес­ти данные и формулы в ячейки таблицы, задать коман­ды с помощью панели инструментов, команд меню или «горячих клавиш». Связь с операционной системой осу­ществляется путем передачи управления тем процеду­рам ОС, которые необходимы для выполнения команд пользователя. Связь с другими программными средства­ми осуществляется, например, через буфер обмена дан­ными (при использовании технологии динамического об­мена данными), позволяющий переносить данные из текстового редактора или базы данных в ЭТ и обратно. Системно-интегративный анализ позволяет определить те модули, которые наиболее часто используются или не используются никем, а также модули, которые было бы желательно добавить, чтобы обеспечить пользователей необходимыми дополнительными возможностями.

Системно-исторический анализ позволяет проследить, как совершенствовались электронные таблицы. Появив­шись в 1983 году, уже к концу 80-х годов они вошли в число наиболее распространенных программных средств. В настоящее время они входят как важный компонент во все офисные пакеты, установлены практически на всех ПК.

При рассмотрении объекта как системы необходимо:
  1. сформулировать цель исследования;
  2. выделить основные (системообразующие) элементы и подсистемы;
  3. определить, как они взаимосвязаны между собой;
  4. выявить основные функции каждой подсистемы и сис­темы в целом;
  5. определить входы и выходы системы и способы реаги­рования на внешние воздействия, то есть определить, каким образом объект взаимодействует с окружающей средой;
  6. выявить системообразующие факторы, обуславливаю­щие сохранение и/или развитие объекта как единого целого;
  7. определить системоразрушающие факторы;
  8. проанализировать этапы развития системы, ее перс­пективы.

Одним из методов системного анализа является модели­рование, в частности, информационное моделирование. Одна и та же система может быть рассмотрена и описана с разных точек зрения (исходя из разных целей), что выража­ется в выделении разных параметров, характеризующих эту систему. Иными словами, система может быть описана мно­жеством моделей.

Пример Система «водитель-автомобиль» может быть представле­на моделями, отражающими:
  • статическое состояние компонентов системы (внутрен­нее устройство двигателя, состав и расположение при­боров на панели управления);
  • энергетические процессы (термодинамический цикл в процессе сгорания топлива);
  • процесс управления (правила для водителя по управле­нию автомобилем).

Пример Система «человек-компьютер» может быть рассмотрена с точки зрения возможностей по обработке информации, предоставляемых человеку. Параметрами модели систе­мы с этой точки зрения будут производительность цент­рального процессора, объем оперативной памяти, состав периферийных устройств, состав и функции програм­много обеспечения и др. Эта же система может быть опи-

сана с точки зрения взаимодействия ее основных подсис­тем — параметрами в этом случае будут выступать тип пользовательского интерфейса, его «дружественность», опыт и квалификация человека, перечень задач, кото­рые он решает с помощью компьютера и др. Эта же сис­тема может быть описана с точки зрения ее взаимодейст­вия с окружающей средой, в частности, ее места и роли в глобальной компьютерной сети. Параметрами в этом случае являются: характер взаимодействия с сетью — возможно только обращение к ресурсам сети или предо­ставление ресурсов, размещенных на собственном сайте; наиболее часто используемые услуги сети (электронная почта, чат, поисковые системы и пр.); среднее время, проводимое в сети, и пр.

Основными объектами изучения современной науки все чаще выступают большие и сложные системы, то есть сис­темы, состоящие из большого числа элементов, с разнооб­разными связями между ними, выполняющими многочис-леные функции. Их всестороннее изучение требует объединения усилий исследователей разных специально­стей, интеграции знаний, накопленных в различных облас­тях науки и техники.

Пример. Сложной системой является отдельный человек, если рассматривать совокупность его духовных, нравствен­ных, психических, интеллектуальных, эстетических, физических, физиологических качеств.

Пример. Сложными являются практически все социальные систе­мы — нации, государства, партии, производственные и учебные коллективы.

Пример. К классу сложных систем относятся социотехнические (человеко-машинные) системы — производственные пред­приятия, система дорожного движения, система инфор­матизации общества.

Пример. Отдельный компьютер (как совокупность аппаратного и программного обеспечения) и компьютерные (телеком­муникационные) сети также относятся к классу слож­ных систем.

Изучение систем необходимо для того, чтобы:
  • понимать закономерности их развития и не выступать (вольно или невольно) разрушающим, дестабилизирую­щим фактором;
  • знать процессы, происходящие в системе для целенаправ­ленного управления развитием системы и предотвраще­ния нежелательных последствий;

• уметь планировать и осуществлять управляющие воз­действия на систему, с тем, чтобы значения ее парамет­ров были оптимальными с точки зрения выполнения присущих ей функций в рамках всеобщих систем, таких как общество, государство, биосфера, ноосфера, Вселен­ная, мироздание.

Системный подход является закономерным результатом развития методов научного познания. Системные представ­ления существовали в науке задолго до того, как этот тер­мин стал широко использоваться. Уже древние космогони­ческие мировоззренческие модели рассматривали окружаю­щий нас мир как нечто единое, взаимосвязанное. В истории развития таких наук, как астрономия, химия, физика, био­логия, география, обществоведение можно проследить, как исследователи постепенно стали все прочнее опираться на системный подход.

В современных научных иследованиях системный подход является одним из основных, наряду с такими подходами, как синергетический и информационный. В настоящее время он используется не только для получения новых знаний о за­кономерностях природы и общества, но в большей степени с целью применения научного знания для построения искусст­венных систем, создаваемых трудом и гением человека.

Особенно наглядно это проявляется в технике, где проек­тирование и создание сложных систем требует согласован­ной работы сотен тысяч элементов.



Системная методология — совокупность методов изуче­ния свойств различных классов системных задач, то есть за­дач, касающихся отношений в системе или отношений сис­темы с внешним окружением.

Системный подход — метод исследования какого-либо объекта как системы.

Анализ — выделение составных частей исследуемого объ­екта; переход от общего описания исследуемого объекта к выявлению его внутреннего строения, состава, определению свойств его отдельных элементов, отношений между элемен­тами и пр.

Синтез — составление целостного представления об объ­екте, конструирование новых объектов.

Успешное проведение анализа и синтеза часто позволяет обнаружить не известные ранее свойства объекта.

Целенаправленное изучение системы будет эффективным в том случае, если каждая из подсистем, полученная в резу­льтате анализа, будет существенно проще для рассмотрения, чем исходная система, а число взаимосвязей между подсис­темами получится минимальным и обозримым.

Виды системного анализа:
  • системно-элементный — получение ответа на вопрос, из чего (каких компонентов) образована система;
  • системно-структурный — раскрытие внутренней орга­низации системы, способа взаимодействия образующих ее элементов, построение структурной схемы;
  • системно-функциональный — определение функций, вы­полняемых системой и образующиим ее компонентами;
  • системно-комуникационный — раскрытие взаимосвязи данной системы с другими, как по горизонтали, так и по вертикали с точки зрения обмена информацией;
  • системно-интегративный — определение механизмов, факторов сохранения, совершенствования и развития си­стемы;
  • системно-исторический — получение ответа на вопрос, как возникла система, какие этапы в своем развитии про­ходила, каковы ее перспективы.

Основные этапы системного анализа:
  1. определение цели исследования объекта;
  2. выделение основных (системообразующих с точки зре­ния выбранной цели) элементов и подсистем;
  3. определение и моделирование стуктуры системы, то есть способов взаимосвязи элементов и подсистем между собой;
  4. выявление функций основных подсистем и системы в целом;
  5. определение входов и выходов системы, а также спосо­бов взаимодействия системы с окружающей средой, модели­рование процесса функционирования системы;
  6. выявление системообразующих факторов, обуславливаю­щие сохранение и/или развитие объекта как единого целого;
  7. определение системоразрушающих факторов и условий их нейтрализации;
  8. анализ этапов развития системы и ее перспектив.

В системном анализе широко используется моделирова­ние, в том числе информационное моделирование. Изучение систем необходимо для того, чтобы:

• понимать закономерности их развития и не выступать
(вольно или невольно) разрушающим, дестабилизирую­
щим фактором;

• знать процессы, происходящие в системе для целенаправ­
ленного управления развитием системы и предотвраще­
ния нежелательных последствий;

• уметь планировать и осуществлять такие управляющие
воздействия на систему, чтобы значения ее параметров
были оптимальными с точки зрения выполнения прису­
щих ей функций в рамках таких всеобщих систем, как
Ноосфера, Вселенная, Мироздание.



Задание 1

Определите, в каких случаях осуществляется анализ или синтез, а в каких нет:

а) исследуется назначение каждого из пунктов меню графиче­
ского редактора, а затем с помощью этого редактора создается
изображение;

б) при реставрации книга разделяется на отдельные листы, а за­
тем вновь переплетается;

в) при переводе с иностранного языка каждое слово предложе­
ния переводится на родной язык, а затем формулируется перевод
всего предложения;

г) фраза разбивается на отдельные слова и словосочетания, а за­
тем с помощью их перестановки получают новое предложение
(например, «Казнить нельзя, помиловать» и «Нельзя помило­
вать, казнить»).

Задание 2

Современные историки и литературные критики с позиций сис­темного подхода подходят к изучению исторических событий и литературных произведений. Проведите системно-элементный анализ следующих объектов:

а) сказка Аксакова «Аленький цветочек»;

б) басня Крылова «Квартет»;

в) роман И. С. Тургенева «Отцы и дети»;

г) первая мировая война;

д) вторая мировая война;

е) становление российской государственности.

Задание 3

Проведите системно-структурный анализ следующих объектов (выделите системообразующие элементы и связи):

а) учебник информатики;

б) персональный компьютер;

в) ваша семья;

г) произведение, которое вы изучаете на уроках литературы;

д) город, в котором вы живёте.

Задание 4

Проведите системно-функциональный анализ приведенных ниже систем. Определите, зависят ли функции системы (объекта анализа) от функций ее составных элементов.

а) географический атлас;

б) текстовый редактор;

в) водитель за рулем автомобиля;

г) сеть Интернет;

д) программное обеспечение ПК.

Задание 5

Пусть система состоит из 20 элементов. Предположим, что каж­дый элемент связан с любым другим только одной связью. Сколь­ко будет всего взаимосвязей?

Каждый из 20 элементов связан с 19 остальными. Тогда всего связей 20 х 19 = 380.

Разобъем систему на 4 подсистемы по пять элементов в каждой. Если рассматривать подсистему как отдельный элемент, то чис­ло связей между подсистемами 4 х 3 = 12, число связей внутри каждой подсистемы — 5x4 = 20.В этом случае исследовать не­обходимо всего 12 + 4 х 20 = 92 связи (вместо 380). Таким образом, исследовать систему, разбив ее на подсистемы, как правило, легче. Проведите подобные расчеты, если:

а) в системе 20 элементов и она допускает разбиение на 5 подсис­
тем по 4 элемента в каждой;

б) в системе 100 элементов и она допускает разбиение на 10 под­
систем по 10 элементов в каждой.



Если ученый является приверженцем системного подхода и никогда от него не отступает, может ли это обеспечить ис­тинность выводов, к которым он пришел в результате иссле­дования? Иными словами, всегда ли в результате системно­го подхода мы получаем достоверное знание?



Важность системного подхода была осознана в связи с за­конами сохранения массы и энергии.

Деятельность человека нуждается во все более возраста­ющем количестве вещества и энергии. Отсюда возник во­прос: является ли вещество и энергия неисчерпаемыми? От­ветом на него были два фундаментальных закона сохранения: закон сохранения вещества и закон сохранения энергии: суммарное количество энергии и вещества в зам­кнутой системе остаются постоянными.

Пример. По шероховатой поверхности движется тележка с гру­зом. Известно, что она обладает кинетической энергией. Через некоторое время она остановится. Можно предпо­ложить, что энергия исчезла. Однако, пользуясь зако­ном сохранения, применённым к системе «тележка-по­верхность», можно утверждать, что существует какой-то вид энергии, который позволяет сохранить неизменным общее количество энергии. Это тепловая энергия. Заме­тим, что раньше теплоту не считали энергией. Она рас­сматривалась как некая неразрушимая жидкость — флигостон, которую впитывают материальные тела как губки впитывают воду. Чем больше флигостона впитало тело, тем оно теплее. Однако в XIX веке было показано, что теплота — это один из видов энергии. Таким образом, введение нового вида энергии — тепло­вой — было сделано исключительно исходя из закона со­хранения энергии, то есть исходя из системных сообра­жений.

Пример. Другим примером является история открытия новой элементарной частицы — нейтрино.

В 20-х годах прошлого века физики всего мира интен­сивно занимались изучением радиактивного распада тя­желых ядер атомов. При этом оказывалось, что энергия ядра до распада не совпадала с энергией его «осколков». Чтобы обеспечить выполнение закона сохранения энер­гии 1930 г. физиком В. Паули было сделано предполо­жение, что недостающую энергию уносит неизвестная частица, которая потом и была найдена. Так было от­крыто нейтрино.

Законы сохранения массы и вещества выполняются во всех известных в настоящее время системах, однако их ис­тинного понимания нет до сих пор. Как иронично заметил один известны ученый, физики считают законы сохранения философским постулатом, а философы — эксперименталь­ным физическим фактом.

Законы сохранения вещества и энергии имеют исключи­тельно важные следствия для науки, политики и интеллек­туальной и духовной жизни общества. Например, если ци­вилизация ставит во главу угла непрерывное, все расширяющееся производство, она нуждается в постоянном притоке вещества и энергии, и, как следует из законов со­хранения, в постоянном расширении своих подсистем. В со­циально-экономическом плане это означает необходимость постоянно экспансии, сопровождающейся войнами, револю­циями и пр. История показывает, что подобные экспансии характерны для всех промышленно-развитых стран.



Уточним понятие сложной системы, поскольку систем­ный подход применяется чаще всего именно для исследова­ния систем такого рода.

К характерным особенностям сложных систем относят:
  • большое число взаимосвязанных разнородных элементов и подсистем;
  • многообразие структуры системы, обусловленное как раз­нообразием структур ее подсистем, так и многообразием способов объединения подсистем в единую систему;
  • сложность функций, выполняемых системой и направ­ленных на достижение цели ее функционирования;
  • взаимодействие с внешней средой и функционирование в условиях воздействия случайных факторов;
  • наличие управления, часто имеющего иерархическую структуру, а также разветвленной информационной сети и интенсивных информационных потоков;
  • отсутствие возможности получения полной и достоверной информации о свойствах системы в целом по результатам изучения свойств ее отдельных элементов;
  • наличие множества критериев оценки качества и эффек­тивности функционирования системы и ее подсистем. Важнейшими способами исследования сложных систем

являются:
  • синтез, который состоит в нахождении структуры и опре­деляющих параметров системы цо заданным ее свойст­вам;
  • анализ, при осуществлении которого по известным структуре и параметрам системы изучается ее поведение, исследуются свойства системы и ее характеристики. Эти способы взаимосвязаны и используются совместно.

В частности, более сложные задачи синтеза чаще всего ре­шаются с использованием результатов решения задач ана­лиза. Основным инструментом решения задач анализа и синтеза системы является информационное моделирование системы.

1.3. Информационные системы. Автоматизированные информационные

системы



Понятия «информация», «информационный процесс», «информационная система» тесно взаимосвязаны. Невоз­можно определить, какое из этих понятий «первично» по от­ношению к остальным. Любая попытка определения каждо­го из них обычно невозможна без привлечения остальных.

Информация проявляется в информационных процессах, которые протекаеют только в рамках какой-либо системы.

Такие системы естественно назвать информационными (ИС). В последовательности изменения состояния ИС и проявля­ются информационные процессы.

Можно рассуждать иначе и считать, что информационная система — это система, некоторые элементы которой явля­ются информационными объектами (информацией), а неко­торые связи осуществляются благодаря протеканию инфор­мационных процессов. То есть, наличие информации и информационных процессов позволяет «появиться», реали­зоваться и информационной системе.

Попытка дать строгое определение понятия «информаци­онная система» сразу же вызывает необходимость в строгом определении понятия «информация», которое, как вам изве­стно, современная наука еще не выработала.

Информатика изучает закономерности протекания ин­формационных процессов в системах различной природы, но в наибольшей степени предметом ее исследований явля­ются информационные процессы в технических и социотех-нических системах. Причем, эти закономерности важны с точки зрения возможности автоматизации этих процессов. Поэтому при рассмотрении информационных систем ограни­чимся рамками технических и социотехнических информа­ционных систем, причем преимущественно автоматизиро­ванных информационных систем.

Пример. Рассмотрим обычную и автоматическую стиральные ма­шины. Для стирки белья и ту и другую нужно подклю­чить к электрической сета. Но процесс стирки (наполне­ние машины водой, установка температуры, время вращения барабана и пр.) в первом случае полностью ре­гулируется человеком, а во втором — управляющей про­граммой, записанной на специальной перфокарте или микросхеме. Обычную стиральную машину вряд ли кто-нибудь назовет информационной технической систе­мой, а вот автоматической это название вполне подхо­дит.

Замечание 1.

Отметим различие терминов «автоматическая» и «авто­матизированная». Автоматически выполняется тот процесс, который, даже если начался по команде человека, в даль­нейшем протекает без его участия вплоть до завершения. Когда же речь идет об автоматизированном процессе, имеет­ся в виду, что человек может по мере необходимости вмеши­ваться, регулировать и направлять ход процесса.

Замечание 2.

Когда мы говорим, что данная система является инфор­мационной, это не значит, что все ее элементы и все связи только информационные. Элементы системы могут быть са­мой разной природы — вещественные, энергетические, информационные. Чтобы систему можно было отнести к классу информационных, достаточно, чтобы некоторые ее элементы и/или некоторые связи носили информационный характер.