Систематический курс 11 класс Для классов гуманитарного профиля Допущено

Вид материалаУчебник

Содержание


Целостность и делимость.
Неоднозначность соответствия «система
Взаимодействие со средой.
Элементы системы
Объект Цель исследования Основные Элементы
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   13

Ступени

Профили Начальная Среднее Старшие

школа звено классы

Общеобразовательные классы 1а 2а За 5а 6а 7а 8а 9а

16 26 36 56 66 76

Физико-математические 5в 86 96 10а 11а
классы

Классы гуманитарного 6в 7в 8в 9в 106
профиля

Классы, занимающиеся по 1в 8г9г 10в Ив

профилю «Информационные

техонлогии» |

Рис. 1.1.6. Структура профильных классов школы

Отличительной особенностью системы является наличие У нее таких качеств или функций, которые не свойственны ни одному ее элементу, ни одной ее подсистеме, взятым в отдель­ности. Это свойство системы называется эмерджентностью.

Пример. Если телевизор или радиоприемник разобрать на части, то они не смогут выполнять функции по приему и транс­ляции теле- и радиопередач.

Пример. Глаэы романа по отдельности не передают сюжета и за­мысла автора во всей его полноте.

Пример. Учительский коллектив, администрация школы, учеб­ники и учебные пособия, программы обучения, родите­ли, школьные помещения, оборудование кабинетов и т.д., взятые по отдельности, не могут обеспечить образо­вательный процесс.

Пример. Каждый из учеников вашего класса имеет свой харак­тер, индивидуальные особенности. У класса, как единого коллектива, тоже есть свой неповторимый «характер», присущие ему свойства и особенности, которые невоз­можно напрямую связать с особенностяим составляю­щих класс учеников. Это и есть одно из проявлений свойства эмерджентости.

Системы можно сравнивать между собой. Параметры, по которым оценивается система, выбираются в зависимости от целей сравнения. Оценки могут быть количественными и ка­чественными.

Пример. Два класса могут сравниваться по количеству учеников, успеваемости, по результатам спортивных состязаний и пр.

Пример. Компьютеры можно сравнивать по производительности, но­визне установленных программных средств, дизайну и пр.

Пример. Параметрами литературного произведения могут быть-" жанр, количество персонажей, динамизм действий, вы­раженность авторской позиции и пр.

Пример. Параметрами справочной системы могут быть: коли­чество содержащихся в ней документов, удобство поль­зования, полнота отражения данной области действите­льности, периодичность ее обновления и пр. Если какой-то параметр системы изменяется, то это свиде­тельствует о протекании в ней каких-то процессов. Измене­ние значения параметра — это, по сути, результат процесса.

Пример. Успеваемость класса выросла. Это может свидетельство­вать, в частности, о возрастании интереса учеников к учебе.

Пример. Количество документов, содержащихся в справочной си­стеме, увеличилось. Это результат выполнения процедур ввода новых документов, их размещения в хранилище, изменения каталога системы.

Очевидно, что понятие «процесс» тесно связано с поняти­ем «изменение параметров системы». Это можно сформули­ровать следующим образом: под процессом понимается упо­рядоченная последовательность состояний системы. Упорядоченность чаще всего определяется в связи с вре­менными характеристиками, то есть изменением того или иного параметра с течением времени.

Изменение состава и структуры системы — удаление или добавление элементов или связей — это результат каких-то процессов. Заметим, что удаление элемента системы или по­явление нового всегда приводят к изменению взаимосвязей. Изменение взаимосвязей (например, ослабление или резкое усиление связи между какими-то элементами) влечет за со­бой изменение значений параметров системы.

Системы бывают самых разных видов:
  • материальные и информационные (абстрактные);
  • простые и сложные;
  • естественные и искусственные (конструктивные);
  • неорганические и органические;
  • статичные и динамичные;
  • детерминированные (вполне определенные) и стохастиче­ские (вероятностные);
  • замкнутые и открытые;
  • стационарные и нестационарные;
  • стабильные и нестабильные;
  • устойчивые и изменяющиеся;
  • развивающиеся и деградирующие.

Эти и другие аспекты изучаются в таких отраслях науч­ного знания как системный анализ, общая теория систем, синергетика и пр.



Согласно общей теории систем любой реальный объект можно рассматривать как единое целое. В этом суть систем­ного подхода.

Объект становится для нас системой, когда мы рассмат­риваем его с какой-либо вполне определенной целью, дости­жение которой невозможно без анализа его состава, структу­ры и функций.

Система — это:
  • внутренне организованная целостность, элементы кото­рой взаимосвязаны так, что возникает, как минимум, одно новое интегративное качество, не свойственное ни одному из элементов этой целостности;
  • организованное множество структурных элементов, взаи­мосвязанных и выполняющих определенные функции;
  • любой объект, который одновременно рассматривается и как единое целое, и как совокупность разнородных эле­ментов (объектов), объединенных для достижения опре­деленного результата.

Элемент системы — составная часть системы, объект, вы­полняющий определенные функции в системе и в рамках данной задачи не подлежащий дальнейшему делению на ча­сти. В зависимости от вида системы элементами системы мо­гут быть предметы, свойства, состояния, связи, отношения, этапы, циклы, уровни функционирования и развития.

Структура системы — внутренняя организация системы, способ взаимосвязи и взаимодействия элементов, составляю­щих систему.

Структуризация — выделение в системе элементов и свя­зей между элементами, то есть определение того, как эле­менты соотносятся друг с другом.

Подсистема — совокупность элементов системы (чаще всего с их взаимосвязями). Этот термин используется для обозначения самостоятельной (допускающей относительное обособление) части системы, цель которой подчинена цели функционирования системы в целом.

Декомпозиция системы — разбиение системы на подсис­темы.

Свойства системы;

1. Целостность и делимость. С одной стороны, система — это совокупность объектов, которые могут быть рассмот­рены как единое целое, мысленно ограниченное в про­странстве или времени. С другой стороны, в системе мо­гут быть выделены составляющие ее элементы. Удаление из системы элемента изменяет ее свойства.
  1. Структурность (взаимосвязность элементов). Характе­ристики системы, ее поведение зависят не только от свойств составляющих ее элементов, но и от способа их взаимосвязи, то есть от структуры системы.
  2. Неоднозначность соответствия «система струк­тура системы». Поскольку структура — это только не­которая характеристика системы, то в зависимости от це­лей системы, можно выделить разные связи, признаки и свойства системы в качестве структурных. То есть в об­щем случае однозначного соответствия между системой и ее структурой нет.
  3. Интегративность. Системе присущи интегративные (системные) свойства, которые не свойственны ни одному из ее элементов в отдельности, но зависят от их свойств.
  4. Иерархичность. При изменении цели (задач) исследова­ния каждый элемент или совокупность нескольких эле­ментов системы могут рассматриваться как новые систе­мы (подсистемы), а исследуемая система — как элемент более широкой системы (надсистемы).
  5. Взаимодействие со средой. Система проявляет свои свойства в процессе взаимодействия со средой.

Всестороннее исследование системы (особенно большой и сложной), как правило, требует построения множества мо­делей, каждая из которых описывает лишь определенный аспект системы.

Система характеризуется функциями, назначением, вхо­дами и выходами, внутренним состоянием.

Система оценивается определенным набором качествен­ных и количественных показателей — параметров системы.

Наиболее общие типы систем:

• эмпирические, среди которых выделяют:
  • неживые (неорганические): физические, химические, геологические и другие системы; особый класс — тех­нические системы, создаваемые человеком;
  • живые (органические): все живые организмы от про­стейших биологических организмов до экосистемы Земли в целом;

• абстрактные: системы понятий, системы умозаключений,
системы знаний и представлений, концепции, теории
и пр.

Процесс — упорядоченная последовательность состояний системы.

Изменение качественных или количественных характе­ристик, состава или структуры системы есть результат како­го-либо процесса, протекающего в системе.

Удаление элемента из системы или появление нового все­гда приводят к изменению системных связей.

Изменение связей между элементами влечет за собой из­менение параметров системы, то есть её качественных или количественных характеристик.



Задание 1

Сформулируйте сущность системного подхода применительно к изучению информатики.

Задание 2

Рассмотрите перечисленные в таблице объекты с позиции сис­темного подхода. Выделите их элементы и основные подсисте­мы в зависимости от цели исследования объекта. Заполните таблицу.

Объект

Цель исследования

Основные подсистемы

Элементы системы

Литературное произведение

Подготовить рукопись к типо­графской печати







Изучить возможность написания сценария по мотивам произведе­ния для будущего фильма







Парк

Оценить влияние на экологию прилегающей территории







Исследовать возможность прове­дения соревнований по спортив­ному ориентировнию







Виртуальный

(электронный)

магазин

Приобрести необходимый вам товар







Создать сайт — виртуальный ма­газин







Объект Цель исследования Основные Элементы

подсистемы системы

Литературное Подготовить рукопись к типо-

произведение графской печати

Изучить возможность написания
сценария по мотивам произведе-
ния для будущего фильма

Парк Оценить влияние на экологию

прилегающей территории

Исследовать возможность прове­дения соревнований по спортив­ному ориентировнию

Виртуальный Приобрести необходимый вам

(электронный) товар

магазин Создать сайт — виртуальный ма-

газин

Задание 3

Определите структуры фраз; постройте модели структур:

а) «Где дело само за себя говорит, к чему слова»;

б) «Истинный друг познается в беде»;

в) «Нет такой плохой книги, которая была бы совершенно беспо­
лезна» (Плиний старший);

г) «Нет такого пустого писателя, который не нашел бы подобного
себе читателя»;

д) «Завтра, завтра, всегда завтра — так проходит жизнь».

Задание 4

Определите для каждой из следующих систем, какое интегра-тивное свойство им присуще, то есть каким свойством (или фун­кцией) обладает система в целом, хотя ни один из элементов сис­темы им не обладает:

а) автомобиль как совокупность отдельных узлов, деталей, горю­
чего и пр.;

б) бассейн реки (например, Волги) как совокупность рек, впада­
ющих в них ручьев и пр.;

в) программное средство (например, графический редактор) как
совокупность файлов — программных модулей;

г) поселок как совокупность жителей, строений, особенностей
ланшафта и пр.

Задание 5

Известному польскому писателю-фантасту А. Азимову принад­лежит следующий замечательный пример композиции системы: «Тот кто надел на глаза шоры, должен помнить, что в комплект входят узда и кнут».

Приведите примеры из литературных произведений, когда ка­кой-либо объект рассматривается с точки зрения системного подхода.



Первые представления о системе возникли в античной фи­лософии и науке. У Платона и Аристотеля это проявилось в представлениях об упорядоченности и цельности бытия. Вплоть до середины XIX века понятие системы передавало смысл целого, единого. В XX веке произошло наполнение по­нятия системы новым содержанием. Были введены понятия биосферы (В. И. Вернадский), ноосферы (Э. Леруа, П. Тейяр де Шарден), самоорганизующихся систем (У. Эшби). Появля­ется кибернетика (Н. Винер) как наука об управлении и свя­зи в живом организме и машине. В физике, химии, биологии

изучаются сложные динамические системы. В физиологии и психологии возникает теория функциональных систем (И. М. Сеченов, П. К. Анохин). В лингвистике рассмотрение языка как системы приводит к появлению семиотики как на­уки о знаковых системах (Ф. де Соссюр). В конце 40-х годов зарождается общая теория систем (Л. Берталанфи, М. Меса-рович, В. М. Глушков), которая становится основой для раз­вития системотехники, структурного анализа и пр.

Приведем некоторые положения общей теории систем.

Системы как некие целостные, относительно самостояте­льные объекты могут существовать только в том случае, когда сила существенных (системообразующих) связей меж­ду элементами системы больше, чем сила связей этих же элементов с окружающей средой. Только в этом случае сис­тема может восприниматься и исследоваться как отдельный объект.

В общем случае каждый элемент системы обладает систе­мообразующими свойствами, свойствами, нейтральными по отношению к системе, а также системоразрушающими свой­ствами. Последние свойства при вхождении элемента в сис­тему обычно подавляются, но чаще всего не полностью. Именно они, наряду с воздействием внешних факторов, час­то становятся причиной разрушения системы.

Основным системостабилизирующим фактором является согласованность внутреннего устройства системы и среды. Это означает, в частности, включение системы как части в состав более общей системы. Среда не сводится просто к набору случайных воздействий. Она рассматривается так­же как система, в которой действуют определенные законо­мерности.

Рассогласование взаимодействия системы и среды вы­ступает как системоразрушающий фактор, если оно выхо­дит за границы устойчивости системы. При этом разрыва­ются внутренние связи системы и она распадается на отдельный части. Если рассогласование не выходит за гра­ницы устойчивости системы, то происходит перестройка системы с целью достижения взаимосогласованности со средой.



Большой интерес в современных научных исследованиях вызывают так называемые самоорганизующиеся (самонас­таивающиеся) системы, которые способны переходить пу­тем последовательного изменения своих свойств к некото­рым устойчивым состояниям, несмотря на воздействия внешней среды (а иногда и благодаря им).

Наглядно процесс самоорганизации можно продемонстри­ровать с помощью так называемых клеточных автоматов, наи­более известный пример которых можно увидеть в игре «Жизнь», описанной в главе «Компьютерное моделирование».

Может ли система, находящаяся в хаотическом состоя­нии, самоупорядочиться?

На первый взгляд кажется невероятным, чтобы так про­сто, из случайной смеси каких либо элементов вдруг, сами собой, без вмешательства внешней организующей силы воз­никли сложные высокоупорядоченные структуры. По этому поводу один из персонажей трактата Цицерона «О природе богов» стоик Бальб восклицает: «Не понимаю, почему чело­веку ... не поверить ..., что если изготовить из золота или какого-либо другого материала в огромном количестве два­дцать одну букву, а затем бросить эти буквы на землю, то из них сразу получатся «Анналы» Эннея, так что их сразу можно будет и прочитать».

Для золотых букв, которые имел в виду Бальб, это дейст­вительно справедливо. Однако в предоставленной самой себе совокупности элементов, которое небезразличны друг к дру­гу, постепенно самопроизвольно возникают взаимосвязи, все более оптимальные с точки зрения действующих в них объективных причин межэлементного взаимодействия. Иными словами, совокупность элементов склонна к само­упорядочиванию, к самоорганизации.

«Перво-наперво возник хаос...» — это положение является древнейшим космологическим постулатом, который в равной степени присущ как мифологии, так и самым современным научным концепциям. Из газопылевых туманностей образу­ются планетные системы. Бесформенные протоплазменные сгустки дают начало высокоупорядоченным организмам. Миру присуще движение от изначальной бесформенности к

обретению формы, от хаоса к порядку. Здесь, правда возни­кает вопрос — в течение какого времени это может произой­ти? Если, например, время возникновения упорядоченной Вселенной из хаоса больше ее возраста, то в этом можно уви­деть скорее отрицание, чем подтверждение идеи самооргани­зации. Идея самоорганизации, составляющая основу новой научной дисциплины синергетики, чрезвычайно популярна. Данная идея во многом позволяет сохранить традиционную естественно-научную картину мира.

Проблема возникновения порядка из хаоса, дилемма при­нудительной организации посредством внешнего организую­щего начала, с одной стороны, и естественной самоорганиза­ции, с другой, тесно связана с вопросами самодостаточности материального мира.

«Неужели же какому-нибудь здравомыслящему человеку может показаться, что все это расположение звезд, эту чу­десную красоту неба могли произвести туда и сюда мечущи­еся по воле слепого случая тельца? Или же какая-то другая природа, лишенная ума и разума, смогла это произвести? Да ведь даже для того, чтобы это понять, какого это, требуется величайший ум, и тем более — для того чтобы создать», — говорил уже упомянутый Бальб.

Ответ на этот вопрос кроется в нашем мировоззрении.

1.2. Системный анализ как метод научного познания



Мы начинаем рассматривать объект как систему, когда нам нужно познать, иследовать, описать его свойства, ха­рактеристики, функции. Именно тогда мы начинаем снача­ла мысленно разделять объект на составные части (анализи­ровать), а потом смотреть, как эти части соединены в объекте (синтезировать).

Анализ и синтез — две дополняющие друг друга мысли­тельные операции, позволяющие человеку исследовать окружающий мир.

При исследовании объекта как системы на первом шаге — этапе анализа системы — осуществляется разбиение системы на подсистемы, то есть осуществляется декомпози­ция системы в соответствии с той целью, которую поставил перед собой исследователь. Каждая из подсистем рассматри­вается затем как система. Для неё определяются входы, вы­ходы, назначение, параметры. На втором этапе — этапе син­теза — устанавливаются отношения между подсистемами, связывающие входы и выходы каждой подсистемы со входа­ми и выходами других подсистем.

Пример Если для починки будильника его распилить, то снова собрать из полученных «кубиков» работающий будиль­ник вряд ли удасться. Как вы понимаете, операция рас­пиливания будильника на части не является операцией анализа.

Проанализируем некоторые объекты с позиций системно­го подхода.

Пример. Сердечно-сосудистая система:

элементы — сердце, артерии, вены, капилляры и так да­лее;

структура — взаимосвязь элементов в процессе движе­ния крови;

входы — кроветворные органы и органы, обеспечиваю­щие эластичность и другие показатели кровеносных со­судов;

выходы — органы, с помощью которых кровеносная сис­тема воздействует на организм, обеспечивая его жизне­деятельность;

целостность — определяется теми функциями, которые система выполняет в организме; это, в частности, достав­ка тканям питательных веществ и кислорода, удаление продуктов распада, обеспечение теплорегуляции и пр.

Пример. Абстрактная система — теория:

элементы — понятийный аппарат, исходные положения (аксиомы), выявленные закономерности, вытекающие из них следствия;

структура — правила вывода новых положений из уже известных;

входы — постановка исследовательской задачи; выходы — решение задачи;

целостность — определяется той методикой исследова­ния, которой придерживается исследователь.

Пример. Электронно-вычислительная система:

элементы — устройства компьютера (аппаратное обеспе­чение), программы (программное обеспечение), данные;

структура — взаимосвязь устройств, определяющая ар­хитектуру компьютера; взаимосвязь устройств и про­грамм, а также программ между собой, обеспечиваемая операционной системой;

входы — устройства и программы, обеспечивающие ввод информации в систему;

выходы — устройства и программы, обеспечивающие вывод информации;

целостность — обуславливается функциями, выполняе­мыми системой по автоматизации информационных про­цессов.

Таким образом, целенаправленное изучение системы бу­дет эффективным в том случае, если каждая из подсистем, полученная в результате анализа, будет существенно проще для рассмотрения, чем исходная система, а число взаимо­связей между подсистемами получится минимальным и обо­зримым.

В научную терминологию прочно вошло понятие