Лекция n 1
Вид материала | Лекция |
- «Социальная стратификация и социальная мобильность», 46.19kb.
- Первая лекция. Введение 6 Вторая лекция, 30.95kb.
- Лекция Сионизм в оценке Торы Лекция Государство Израиль испытание на прочность, 2876.59kb.
- Текст лекций н. О. Воскресенская Оглавление Лекция 1: Введение в дисциплину. Предмет, 1185.25kb.
- Собрание 8-511 13. 20 Лекция 2ч режимы работы эл оборудования Пушков ап 8-511 (ррэо), 73.36kb.
- Концепция тренажера уровня установки. Требования к тренажеру (лекция 3, стр. 2-5), 34.9kb.
- Лекция по физической культуре (15. 02.; 22. 02; 01. 03), Лекция по современным технологиям, 31.38kb.
- Тема Лекция, 34.13kb.
- Лекция посвящена определению термина «транскриптом», 219.05kb.
- А. И. Мицкевич Догматика Оглавление Введение Лекция, 2083.65kb.
Лекция N 42. Входное сопротивление длинной линии.
Входным сопротивлением длинной линии (цепи с распределенными параметрами) называется такое сосредоточенное сопротивление, подключение которого вместо линии к зажимам источника не изменит режим работы последнего. В общем случае для линии с произвольной нагрузкой для входного сопротивления можно записать
Полученное выражение показывает, что входное сопротивление является функцией параметров линии и , ее длины и нагрузки . При этом зависимость входного сопротивления от длины линии, т.е. функция , не является монотонной, а носит колебательный характер, обусловленный влиянием обратной (отраженной) волны. С ростом длины линии как прямая, так соответственно и отраженная волны затухают все сильнее. В результате влияние последней ослабевает и амплитуда колебаний функции уменьшается. При согласованной нагрузке, т.е. при , как было показано ранее, обратная волна отсутствует, что полностью соответствует выражению (1), которое при трансформируется в соотношение . Такой же величиной определяется входное сопротивление при . При некоторых значениях длины линии ее входное сопротивление может оказаться чисто активным. Длину линии, при которой вещественно, называют резонансной. Как и в цепи с сосредоточенными параметрами, резонанс наиболее ярко наблюдается при отсутствии потерь. Для линии без потерь на основании (1) можно записать
Из (2) для режимов холостого хода (ХХ) и короткого замыкания (КЗ), т.е. случаев, когда потребляемая нагрузкой активная мощность равна нулю, соответственно получаем:
Исследование характера изменения в зависимости от длины линии на основании (3) показывает, что при по модулю изменяется в пределах и имеет емкостный характер, а при - в пределах и имеет индуктивный характер. Такое чередование продолжается и далее через отрезки длины линии, равные четверти длины волны (см. рис. 1,а). В соответствии с (4) аналогичный характер, но со сдвигом на четверть волны, будет иметь зависимость при КЗ (см. рис. 1,б). Точки, где , соответствуют резонансу напряжений, а точки, где , - резонансу токов. Таким образом, изменяя длину линии без потерь, можно имитировать емкостное и индуктивное сопротивления любой величины. Поскольку длина волны есть функция частоты, то аналогичное изменение можно обеспечить не изменением длины линии, а частоты генератора. При некоторых частотах входное сопротивление цепи с распределенными параметрами также становится вещественным. Такие частоты называются резонансными. Таким образом, резонансными называются частоты, при которых в линии укладывается целое число четвертей волны. Переходные процессы в цепях с распределенными параметрами Переходные процессы в цепях с распределенными параметрами имеют характер блуждающих волн, распространяющихся по цепи в различных направлениях. Эти волны могут претерпевать многократные отражения от стыков различных линий, от узловых точек включения нагрузки и т.д. В результате наложения этих волн картина процессов в цепи может оказаться достаточно сложной. При этом могут возникнуть сверхтоки и перенапряжения, опасные для оборудования. Переходные процессы в цепях с распределенными параметрами возникают при различных изменениях режимов их работы: включении-отключении нагрузки, источников энергии, подключении новых участков линии и т.д. Причиной переходных процессов в длинных линиях могут служить грозовые разряды. Уравнения переходных процессов в цепях с распределенными параметрами При рассмотрении схемы замещения цепи с распределенными параметрами были получены дифференциальные уравнения в частных производных
Их интегрирование с учетом потерь представляет собой достаточно сложную задачу. В этой связи будем считать цепь линией без потерь, т.е. положим и . Такое допущение возможно для линий с малыми потерями, а также при анализе начальных стадий переходных процессов, часто наиболее значимых в отношении перенапряжений и сверхтоков. С учетом указанного от соотношений (5) и (6) переходим к уравнениям
Для получения уравнения (7) относительно одной переменной продифференцируем (7) по х, а (8) – по t:
Учитывая, что для линии без потерь , после подстановки соотношения (10) в (9) получим
Аналогично получается уравнение для тока
Волновым уравнениям (11) и (12) удовлетворяют решения ; . Как и ранее, прямые и обратные волны напряжения и тока связаны между собой законом Ома для волн и , где . При расчете переходных процессов следует помнить:
Как указывалось, переходный процесс в цепях с распределенными параметрами характеризуется наложением многократно отраженных волн. Рассмотрим многократные отражения для двух наиболее характерных случаев: подключение источника постоянного напряжения к разомкнутой и короткозамкнутой линии. Переходные процессы при включении на постоянное напряжение разомкнутой и замкнутой на конце линии При замыкании рубильника (см. рис. 2) напряжение в начале линии сразу же достигает величины , и возникают прямые волны прямоугольной формы напряжения и тока , перемещающиеся вдоль линии со скоростью V (см. рис. 3,а).Во всех точках линии, до которых волна еще не дошла, напряжение и ток равны нулю.Точка, ограничивающая участок линии, до которого дошла волна, называется фронтом волны. В рассматриваемом случае во всех точках линии, пройденных фронтом волны, напряжение равно , а ток - . Отметим, что в реальных условиях форма волны, зависящая от внутреннего сопротивления источника, параметров линии и т.п., всегда в большей или меньшей степени отличается от прямоугольной. Кроме того, при подключении к линии источника с другим законом изменения напряжения форма волны будет иной. Например, при экспоненциальном характере изменения напряжения источника (рис. 4,а) волна будет иметь форму на рис. 4,б. В рассматриваемом примере с прямоугольной волной напряжения при первом пробеге волны напряжения и тока (см. рис. 3,а) независимо от нагрузки имеют значения соответственно и , что связано с тем, что волны еще не дошли до конца линии, и, следовательно, условия в конце линии не могут влиять на процесс. В момент времени волны напряжения и тока доходят до конца линии длиной l, и нарушение однородности обусловливает появление обратных (отраженных) волн. Поскольку в конце линия разомкнута, то , откуда и . В результате (см. рис. 3,б) напряжение в линии, куда дошел фронт волны, удваивается, а ток спадает до нуля. В момент времени , обратная волна напряжения, обусловливающая в линии напряжение , приходит к источнику, поддерживающему напряжение . В результате возникает волна напряжения и соответствующая волне тока (см. рис. 3,в). В момент времени волны напряжения и тока подойдут к концу линии. В связи с ХХ и (см. рис. 3,г). Когда эти волны достигнут начала линии, напряжение и ток в ней окажутся равными нулю. Следовательно, с этого момента переходный процесс будет повторяться с периодичностью . В случае короткозамкнутой на конце линии в интервале времени картина процесса соответствует рассмотренной выше. При , поскольку в конце линии и , что приведет к возрастанию тока в линии за фронтом волны до величины . При от источника к концу линии будет двигаться волна напряжения и соответствующая ей волна тока , обусловливающая ток в линии, равный , и т. д. Таким образом, при каждом пробеге волны ток в линии возрастает на . Отметим, что в реальном случае, т.е. при наличии потерь мощности, напряжение в линии в режиме ХХ постепенно выйдет на уровень, определяемый напряжением источника, а ток в режиме КЗ ограничится активным сопротивлением и проводимостью линии, а также внутренним сопротивлением источника. Литература
Контрольные вопросы и задачи
Ответ: .
Ответ: .
| ||||||||||||||||||||||||
Лекция N 43. Сведение расчета переходных процессов в цепях с распределенными параметрами к нулевым начальным условиям. |
С учетом граничных условий расчет переходных процессов в цепях с распределенными параметрами можно проводить как при нулевых, так и ненулевых начальных условиях. Однако в первом случае анализ осуществляется в целом проще, что определяет целесообразность сведения расчета к нулевым начальным условиям. Пример такого сведения на основе принципа наложения для задачи на подключение в конце линии нагрузки схематично иллюстрирует рис. 1, где в последней схеме сопротивление имитирует входное сопротивление активного двухполюсника. Таким образом, если к линии, в общем случае заряженной, подключается некоторый в общем случае активный двухполюсник, то для нахождения возникающих волн необходимо определить напряжение на разомкнутых контактах ключа (рубильника), после чего рассчитать токи и напряжения в схеме с сосредоточенными параметрами, включаемой на это напряжение при нулевых начальных условиях. Полученные напряжения и токи накладываются на соответствующие величины предыдущего режима. При отключении нагрузки или участков линии для расчета возникающих волн напряжения и тока также можно пользоваться методом сведения задачи к нулевым начальным условиям. В этом случае, зная ток в ветви с размыкаемым ключом (рубильником), необходимо рассчитать токи и напряжения в линии при подключении источника тока противоположного направления непосредственно к концам отключаемой ветви. Затем полученные токи и напряжения также накладываются на предыдущий режим. В качестве примера такого расчета рассмотрим длинную линию без потерь на рис. 2, находящуюся под напряжением , к которой подключается дополнительный приемник с сопротивлением . В соответствии со сформулированным выше правилом схема для расчета возникающих при коммутации волн будет иметь вид на рис. 3. Здесь ; и в соответствии с законом Ома для волн . Соответствующие полученным выражениям эпюры распределения напряжения и тока вдоль линии представлены на рис. 4. Отметим, что, поскольку , к источнику от места подключения нагрузки пошла волна, увеличивающая ток на этом участке. Если наоборот приемник с сопротивлением не подключается, а отключается, то расчет возникающих при этом волн тока и напряжения следует осуществлять по схеме рис.5. Правило удвоения волны Пусть волна произвольной формы движется по линии с волновым сопротивлением и падает на некоторую нагрузку (см. рис. 6,а). Для момента прихода волны к нагрузке можно записать
или
Складывая (1) и (2), получаем
Соотношению (3) соответствует расчетная схема замещения с сосредоточенными параметрами, представленная на рис. 6,б. Момент замыкания ключа в этой схеме соответствует моменту падения волны на нагрузку в реальной линии. При этом, поскольку цепь на рис. 6,б состоит из элементов с сосредоточенными параметрами, то расчет переходного процесса в ней можно проводить любым из рассмотренных ранее методов (классическим, операторным, с использованием интеграла Дюамеля). Следует отметить, что, если в длинной линии имеет место узел соединения других линий или разветвление, то в соответствии с указанным подходом эту неоднородность следует имитировать резистивным элементом с соответствующим сопротивлением, на который падает удвоенная волна. Пусть, например, линия с волновым сопротивлением разветвляется на две параллельные линии с волновыми сопротивлениями и (см. рис. 7,а). Узел разветвления в расчетном плане эквивалентен резистивному элементу с сопротивлением , при этом расчетная схема замещения для момента прихода волны к стыку линий имеет вид на рис. 7,б. Так, если падающая волна напряжения имеет прямоугольную форму и величину , то в соответствии со схемой замещения на рис. 7,б напряжение на стыке линий в момент прихода волны . Этой величине будут равны волны напряжения, которые пойдут далее в линии с волновыми сопротивлениями и . Отраженная же волна, которая пойдет по линии с волновым сопротивлением , будет характеризоваться напряжением . Таким образом, по правилу удвоения волны определяются отраженные (появившиеся в результате отражения от неоднородности) и преломленные (прошедшие через неоднородность) волны, расчет которых осуществляется по схемам замещения с сосредоточенными параметрами. Следовательно, методика расчета переходных процессов в цепях с распределенными параметрами состоит в последовательном составлении схем замещения с сосредоточенными параметрами для каждого момента прихода очередной падающей волны на очередную неоднородность и расчете по ним отраженных и преломленных волн. В качестве примера рассмотрим падение прямоугольной волны напряжения величиной на включенный в конце линии конденсатор (см. рис. 8,а). Для расчета напряжения на конденсаторе и тока через него в момент прихода волны к концу линии составим схему замещения с сосредоточенными параметрами (см. рис. 8,б). Для этой схемы можно записать , где . Это напряжение определяется суммой прямой (падающей) и обратной (отраженной) волн, т.е. , откуда для отраженной волны имеет место соотношение или для той же волны в произвольной точке линии с координатой , отсчитываемой от конца линии, с учетом запаздывания на время - . Соответственно для отраженной волны тока можно записать . Эпюры распределения напряжения и тока вдоль линии для момента времени , когда отраженная волна прошла некоторое расстояние , представлены на рис. 9. В этот момент напряжение на конденсаторе и ток через него . В качестве другого примера рассмотрим падение прямоугольной волны напряжения величиной на включенный в конце линии индуктивный элемент (см. рис. 10,а). В соответствии с расчетной схемой на рис. 10,б для тока через катушку индуктивности и напряжения на ней соответственно можно записать ; , где С учетом этого выражения для отраженных волн напряжения и тока в произвольной точке линии имеют вид ; . Эпюры распределения напряжения и тока вдоль линии для момента времени приведены на рис. 11. Литература
Контрольные вопросы и задачи
Ответ: ; ; .
Ответ: ; .
Ответ: ; ; .
Ответ: ; .
Ответ: . |