Джеймс трефил

Вид материалаЗакон

Содержание


Фрэнсис харри комптон крик
Джеймс дьюи уотсон
Законы менделя
Родственный отбор
Зависимость количества видов от площади экосистемы
Принцип конкурентного исключения
Теорема о маргинальных значениях
Атомная теория строения вещества
Идеального газа
Ренцо романо амедео карло авогадро
Закон кулона
Электромагнитной индукции фарадея
Андре-мари ампер
Подобный материал:
1   ...   4   5   6   7   8   9   10   11   ...   50

ФРЭНСИС ХАРРИ КОМПТОН КРИК

(Francis Harry Compton Crick, 1916-2004) — английский молекулярный биолог (на фото справа). Родился в Нортгемптоне в семье обувного фабриканта. В 1938 году получил диплом физика в Университетском колледже в Лондоне. В годы войны занимался разработкой акустических и магнитных мин. Впоследствии решил исследовать «тайну жизни». В 1951 году, когда Крик изучал структуру белков в новом подразделении, созданном Медицинским исследовательским советом в Кавен-дишской лаборатории Кембриджа, студент Джеймс Уотсон предположил, что для понимания функции молекулы ДНК необходимо выяснить ее структуру. Успешные поиски в этом направлении принесли Уотсону и Крику в 1962 году Нобелевскую премию в области физиологии и медицины. Более поздние работы Крика связаны с разработкой центральной догмы молекулярной био -логии . В 1977 году Крик перешел в институт Солка в Сан-Диего, где продолжил поиски «тайны жизни», переключившись на изучение сознания.

ДЖЕЙМС ДЬЮИ УОТСОН (James Dewey Watson, р. 1928) — американский биохимик. Родился в Чикаго, штат Иллинойс. В возрасте 15 лет поступил в университет Чикаго, который окончил четырьмя годами позже. В 1950 году получил докторскую степень в университете штата Индиана за изучение вирусов. Его посещение Кавендишской лаборатории в 1951 году привело к сотрудничеству с Фрэнсисом Криком, которое увенчалось открытием структуры ДНК. Крик и Уотсон поделили Нобелевскую премию в области физиологии и медицины с Морисом Уилкинсом (Maurice Wilkins, р. 1916), чьи эксперименты с дифракцией рентгеновских лучей помогли установить двуспиральную структуру ДНК. Розалинда Франклин (Rosalind Franklin, 1920-58), чей вклад в открытие структуры ДНК, по мнению многих, был очень весомым, не была удостоена Нобелевской премии, так как не дожила до этого времени.





1920-е

нач. 1960-х

1970-е
Дрейф генов




1865
Частота генов в популяции может варьировать под действием случайных факторов




1908

ЗАКОНЫ МЕНДЕЛЯ

ЗАКОН

ХАРДИ—ВАЙНВЕРГА


1953

ДРЕЙФ ГЕНОВ


ДНК


1961

РОДСТВЕННЫЙ ОТБОР

ГЕНЕТИЧЕСКИЙ КОД


2000

МОЛЕКУЛЯРНЫЕ ЧАСЫ


ПРОЕКТ «ГЕНОМ ЧЕЛОВЕКА»


закон харди—вайнберга утверждает, что в теоретической идеальной популяции распределение генов будет оставаться постоянным из поколения в поколение. Так, в популяции растений количество «внуков» с генами высокорослости будет ровно таким же, сколько было родителей с этим геном. Но в реальных популяциях дело обстоит иначе. Из-за случайных событий частота распределения генов из поколения в поколение несколько варьирует — это явление называется дрейфом генов.

Приведем простой пример. Представьте себе группу растений, населяющих изолированную горную долину. Популяция состоит из 100 взрослых растений, и лишь 2% растений в популяции содержат особенный вариант гена (например, затрагивающий окраску цветка), т.е. в рассматриваемой нами популяции этот ген имеется лишь у двух растений. Вполне возможно, что небольшое происшествие (например, наводнение или падение дерева) приведет к гибели обоих растений, и тогда этот особенный вариант гена (или, пользуясь научной терминологией, этот аллель) попросту исчезнет из популяции. А значит, будущие поколения будут уже не такими, как рассматриваемое нами.

Существуют и другие примеры дрейфа генов. Рассмотрим крупную размножающуюся популяцию со строго определенным распределением аллелей. Представим, что по той или иной причине часть этой популяции отделяется и начинает формировать собственное сообщество. Распределение генов в субпопуляции может быть нехарактерным для более широкой группы, но с этого момента и впредь в субпопуляции будет наблюдаться именно такое нехарактерное для нее распределение. Это явление называется эффектом основателя.

Дрейф генов сходного типа можно наблюдать и на примере явления с запоминающимся названием эффект бутылочного горлышка. Если по какой-либо причине численность популяции резко уменьшится — под воздействием сил, не связанных с естественным отбором (например, в случае необычной засухи или непродолжительного увеличения численности хищников), быстро появившихся и затем исчезнувших, — то результатом будет случайное устранение большого числа индивидуумов. Как и в случае эффекта основателя, к тому времени, когда популяция вновь будет переживать расцвет, в ней будут гены, характерные для случайно выживших индивидуумов, а вовсе не для исходной популяции.

В конце XIX века в результате охотничьего промысла были почти полностью истреблены северные морские слоны. Сегодня в популяции этих животных (восстановившей свою численность) наблюдается неожиданно маленькое количество генетических вариантов. Антропологи полагают, что первые современные люди пережили эффект бутылочного горлышка около 100 000 лет назад, и объясняют этим генетическое сходство людей между собой. Даже у представителей кланов гориллы, обитающих в одном африканском лесу, больше генетических вариантов, чем у всех человеческих существ на планете.

ок. 1900

1970-е
Зависимость количества видов от площади экосистемы

Количество видов, которое может поддерживать данная экосистема, тем выше, чем больше площадь этой экосистемы




ЗАВИСИМОСТЬ КОЛИЧЕСТВА ВИДОВ ОТ ПЛОЩАДИ ЭКОСИСТЕМЫ


ТЕРРИТОРИАЛЬНОСТЬ У ЖИВОТНЫХ


1926

1934

ОТНОШЕНИЯ ХИЩНИК—ЖЕРТВА


ПРИНЦИП КОНКУРЕНТНОГО ИСКЛЮЧЕНИЯ


1966

ТЕОРИЯ ОПТИМАЛЬНОГО ФУРАЖИРОВАНИЯ


ДИФФЕРЕНЦИАЛЬНОЕ ИСПОЛЬЗОВАНИЕ


1976
РЕСУРСОВ


ТЕОРЕМА О МАРГИНАЛЬНЫХ ЗНАЧЕНИЯХ


Возникает закономерный вопрос: действительно ли небольшие экосистемы могут поддерживать существование меньшего числа видов, чем более крупные? с одной стороны, можно ожидать, что чем больше площадь, тем больше на ней различных экологических ниш, пригодных для использования. с другой стороны, непонятно, почему, например, сократив площадь луга вдвое, можно сократить биологическое разнообразие на нем. Ясно, что общее количество организмов уменьшится, но почему при этом должно измениться количество обнаруживаемых видов?

Ответ на этот вопрос был получен экспериментально. Экологи провели множество исследований. В одном из них на небольшом острове у побережья флориды площадь, пригодную для использования, даже изменяли с помощью бензопилы! Данные изучения материковых и островных экосистем приводят к одинаковому заключению. Если А — площадь экосистемы, а 8 — количество видов, то зависимость между ними описывается формулой:

£ = КЛ",

где п — число от 0,1 до 0,3, а К — константа, представляющая собой количество видов на единицу площади экосистемы. Это выражение называется уравнением зависимости количества видов от площади экосистемы.

Однако надо иметь в виду, что, хотя количество видов, безусловно, зависит от площади экосистемы, эта зависимость не прямая. Так, даже при п = 0,3 увеличение площади экосистемы вдвое сопровождается увеличением количества видов всего на 23%.

Тем не менее эта закономерность имеет важные следствия для природоохранных действий, направленных на сохранение биологического разнообразия. В частности, мы должны понимать, что, сокращая площадь экосистемы, мы получаем не уменьшенную копию оригинала, а новую экосистему с ощутимо меньшим количеством видов. Другими словами, десять небольших клочков дикой природы могут поддерживать существование лишь половины видов, которые можно было бы обнаружить на едином участке земли с площадью, равной суммарной площади этих клочков.

И наоборот, увеличение размеров данной экосистемы не повлечет за собой пропорционального увеличения биоразнообразия, поэтому часто целесообразнее направить средства не на расширение существующих экосистем, а на создание заповедников в совершенно новых экосистемах.


Зависимость период— светимость



Чем дольше период изменения блеска переменной звезды класса цефеид, тем больше энергии она излучает

1912

ЗАВИСИМОСТЬ

ПЕРИОД—

СВЕТИМОСТЬ


1929 • ЗАКОН ХАББЛА


1948 • БОЛЬШОЙ ВЗРЫВ


Когда Китс писал «Звезда моя, ты постоянство света», он явно имел в виду не переменную Цефеиду. Большинство звезд, включая, к счастью для нас, солнце, излучают свет и другие формы лучистой энергии (см. спектр электромагнитного излучения) с более или менее постоянной интенсивностью. Есть, однако, несколько классов звезд, с достаточным на то основанием названных переменными, яркость которых периодически возрастает и убывает из-за колебаний интенсивности поверхностного излучения. В результате наблюдаются циклические изменения свойства звезды, называемого светимостью и отражающего суммарный поток лучистой энергии, покидающий поверхность звезды. Особую историческую роль в развитии астрофизики сыграли переменные звезды класса цефеид, получившие свое название в честь созвездия Цефей, в котором находится первая открытая цефеида — 5 Цефея.

Если проследить за динамикой изменения светимости цефеиды, выясняется, что ее усиление от минимума до пика происходит значительно быстрее, чем затухание, вне зависимости от разницы между максимальной и минимальной светимостями, которая может составлять от нескольких процентов до многократной. И такие колебания светимости у различных цефеид регулярно повторяются с периодичностью от нескольких суток до нескольких месяцев. При этом период цикла изменения светимости (время между максимумами или минимумами яркости) и перепад светимости (разность между максимумом и минимумом) остаются постоянными.

Благодаря этому свойству цефеиды послужили для астрономов первой эталонной свечой — объектом с заведомо известной светимостью. Электрическая лампочка мощностью 100 Вт, например, является прекрасной эталонной свечой в земных условиях. Обнаружив эталонную свечу в пространстве, можно измерить наблюдаемую интенсивность ее излучения и, сопоставив ее с заведомо известной исходной светимостью, определить геометрическое расстояние до источника света. Именно стандартные свечи позволяют астрономам добавлять в картах звездного неба третье измерение — удаленность — к двум наблюдаемым угловым координатам небесных объектов.

В начале XX века американский астроном Генриетта Ливитт заинтересовалась переменными цефеидами и начала их серьезно изучать. К 1912 году она накопила достаточно данных наблюдений, чтобы установить закономерность: чем ярче переменная цефеида, тем дольше длится ее цикл. Вскоре Эдвин Хаббл развил этот результат, связав период цефеиды не с наблюдаемой яркостью, а с присущей звезде светимостью — суммарной энергией, излучаемой звездой в космическое пространство. Так была открыта зависимость «период—светимость». Хаббл же первым использовал открытые им на новом телескопе цефеиды в туманности Андромеды в качестве стандартных свеч и обна-


ружил, что это вовсе не туманность, а соседняя галактика. За этим последовали открытия целого ряда новых галактик и, наконец, открытие закона хаббла, установившего, что галактики разбегаются.


генриетта ливитт (Henrietta

Leavitt, 1868-1921) — американский астроном. Родилась в Ланкастере (Lancaster), штат Массачусетс. В 1895 году. По окончании Рэд-клиффского колледжа (Radcliffe College) получила должность ассистента профессора астрономии Эдварда Пикеринга (Edward C. Pickering) и

под его руководством занималась классификацией звездных спектров, накапливаемых в обсерватории Гарвардского колледжа. Именно там изучение переменных цефеид в Малом Магеллановом облаке (небольшой галактике — спутнике Млечного Пути) и привело ее к открытию зависимости между периодом и яркостью цефеид.

ок. 420 до н.э.
Закон Авогадро

В равных объемах различных газов при постоянных температуре и давлении содержится одинаковое число молекул






1811
АТОМНАЯ ТЕОРИЯ СТРОЕНИЯ ВЕЩЕСТВА


1827
закон авогадро


1834

БРОУНОВСКОЕ ДВИЖЕНИЕ


УРАВНЕНИЕ

СОСТОЯНИЯ


1849
ИДЕАЛЬНОГО ГАЗА


МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ

ТЕОРИЯ


При горении дерева происходит химическая реакция: углерод древесины соединяется с кислородом воздуха и образуется диоксид углерода (С02). Один атом углерода имеет такую же массу, как и 12 атомов водорода, а два атома кислорода — как 32 атома водорода. Таким образом, соотношение масс углерода и кислорода, участвующих в реакции, всегда равно 12:32 (или после упрощения 3 : 8). Какие бы мы ни выбрали единицы измерения, соотношение останется неизменным: 12 грамм углерода всегда реагируют с 32 граммами кислорода, 12 тонн углерода — с 32 тоннами кислорода и т.д. В химических реакциях имеет значение относительное количество атомов каждого элемента, участвующего в реакции. И, наблюдая за горящим в ночи костром, мы можем быть твердо уверены, что для каждого атома углерода из древесины найдутся два атома кислорода из воздуха, и соотношение их масс будет 12 : 32.

Раз это так, значит, в 12 граммах углерода атомов столько же, сколько в 16 граммах кислорода. Химики называют это количество атомов молем. Если относительная атомная масса вещества равна п (т.е. его атом в п раз тяжелее атома водорода), то масса одного моля этого вещества — п грамм. Моль — мера количества вещества, подобная паре, дюжине или сотне. Носков в паре всегда два, яиц в дюжине — всегда двенадцать; точно так же и в моле вещества количество атомов или молекул всегда одно и то же.

Но как же ученые это поняли? Ведь атомы сосчитать все-таки значительно сложнее, чем носки. Чтобы ответить на этот вопрос, обратимся к исследованиям итальянского химика Амедео Авогадро. Ему было известно, что при протекании химической реакции между газами соотношение объемов этих газов такое же, как и их молекулярное соотношение. Например, если три молекулы водорода (Н2) реагируют с молекулой азота (1Ч2) с образованием двух молекул аммиака (1МН3), то объем участвующего в реакции водорода в три раза больше объема азота. Из этого Авогадро сделал вывод, что количество молекул в двух объемах должно находиться в соотношении 3 : 1, или, другими словами, что равные объемы газа должны содержать равное количество атомов или молекул — это утверждение известно нам как закон Авогадро. Авогадро не знал, какое именно количество атомов или молекул должно быть в одном моле вещества. Сегодня мы знаем: это число 6 х 1023; мы называем его числом Авогадро (или постоянной Авогадро) и обозначаем символом N.

Несколько десятилетий исследования Авогадро оставались за рамками европейской науки того времени. Большинство историков склонны объяснять этот любопытный факт тем, что Авогадро работал в Турине, вдали от научных центров Германии, Франции и Англии. И действительно, только когда Авогадро приехал в Германию и представил там результаты своих исследований, они получили заслуженное признание.

Вычисление значения N оказалось непростой задачей. Это удалось сделать только в начале XX века французскому физику Жану


Перрену (Jean Perrin, 1870-1942). Он предложил несколько методов нахождения этого числа, и все они дали один и тот же результат. Самый известный из них основан на количественной теории броуновского движения, разработанной Эйнштейном. Речь идет о непрерывном беспорядочном движении малых частиц (например, пыльцевых зерен) под действием хаотических толчков атомов или молекул окружающей их среды. Движение такого пыльцевого зерна зависит от частоты столкновений, а следовательно, от количества атомов в материальной среде.






ГЮ РЕНЦО РОМАНО АМЕДЕО КАРЛО АВОГАДРО (Lorenzo Romano Amedeo Carlo Avogadro, 1776-1856) — итальянский физик и химик. Родился в Турине в дворянской семье, получил ученую степень доктора церковного права. В 1800 году начал самостоятельно заниматься математикой и физикой, а спустя шесть лет получил должность профессора в колледже города Верчелли. Затем стал профессором кафедры математической физики Туринского университета (в 1821 году кафедру закрыли по политическим причинам, и он смог вновь занять эту должность лишь в 1834 году). Авогадро был чрезвычайно скромным человеком, работал в одиночестве, и большую часть жизни его достижения были неизвестны в научном мире.


Закон Ампера




1785
Движение электрических зарядов приводит к возникновению магнитных полей


1820
ЗАКОН КУЛОНА


1820

ОТКРЫТИЕ ЭРСТЕДА


1820

ЗАКОН АМПЕРА


1831

ЗАКОН БИО—САВАРА


ЗАКОНЫ


1833
ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ ФАРАДЕЯ


ПРАВИЛО ЛЕНЦА


Одним из главных направлений развития естественной науки в начале XIX века стало растущее осознание взаимосвязей между, казалось бы, совершенно не связанными между собой феноменами электричества и магнетизма. Ханс Кристиан Эрстед (см. открытие эрстеда) экспериментально установил, что провод, по которому течет электрический ток, отклоняет магнитную стрелку компаса. Андре-Мари Ампер так заинтересовался этим явлением, что принялся за углубленное экспериментальное и математическое исследование взаимосвязи между электричеством и магнетизмом. В результате и был сформулирован закон, носящий теперь его имя.

Ключевой эксперимент, проведенный Ампером, достаточно прост. Он положил два прямых провода бок о бок и пропускал по ним электрический ток. Выяснилось, что между проводами действует сила притяжения или отталкивания (в зависимости от направления тока. — Прим. переводчика). Конечно, не надо быть семи пядей во лбу, чтобы прийти к такому выводу. Ведь при достаточно сильном токе провода действительно притягиваются или отталкиваются так, что это видно невооруженным глазом. Но Ампер путем тщательных измерений сумел определить, что сила механического взаимодействия пропорциональна силам токов и падает по мере увеличения расстояния между ними. Исходя из этого Ампер решил, что наблюдаемая сила объясняется возникновением магнитного поля.

Рассуждал Ампер примерно так. Электрический ток в одном проводе производит магнитное поле, конфигурация силовых линий которого представляет собой концентрические круги вокруг сечения провода. Второй провод попадает в область воздействия этого магнитного поля, и в нем возникает сила, действующая на движущиеся электрические заряды. Эта сила передается атомам металла, из которого сделан провод, в результате чего провод и изгибается. Таким образом, эксперимент Ампера демонстрирует нам два взаимодополняющих факта о природе электричества и магнетизма: во-первых, любой электрический ток порождает магнитное поле; во-вторых, магнитные поля оказывают силовое воздействие на движущиеся электрические заряды. Первое из этих утверждений сегодня и называют законом Ампера, и закон этот тесно связан с законом био—савара. Именно эти два закона затем легли в основу теории электромагнитного поля (см. уравнения максвелла).

Если же трактовать закон Ампера чуть шире, то мы поймем, что находящийся в пространстве замкнутый электрический контур формирует вокруг себя магнитное поле, интенсивность которого пропорциональна силе протекающего через контур электрического тока и площади внутри контура. То есть, например, если вокруг отдельного прямолинейного проводника с током формируется магнитное поле, индукция которого равна В на расстоянии г от проводника, то при замыкании такого проводника в круговой


контур, путем сложения этих полей внутри контура, образованного замкнутым проводником с током, то есть, выражаясь научным языком, путем интегрирования, мы получим значение интенсивности магнитного поля внутри контура 2prB, где 2рг — площадь кругового контура. По закону Ампера эта величина и будет пропорциональна силе тока в контуре.

На самом деле вы не раз сталкивались с упоминанием имени Андре-Мари Ампера, возможно, сами того не сознавая. Взгляните на любой электроприбор у вас дома — и вы на нем обнаружите его электротехнические характеристики, например: «~220V 50Hz 3,2А». Это значит, что прибор рассчитан на питание от стандартной электросети переменного тока напряжением 220 вольт с частотой 50 герц, а сила потребляемого прибором тока составляет 3,2 ампера. Единица силы тока ампер (сокращенно — А) как раз и названа в честь ученого.

Официальное определение единицы выводится из исходного эксперимента, проделанного Ампером. Это сила тока, протекающего в каждом из двух параллельных прямолинейных проводников, помещенных в вакууме на расстояние одного метра друг от друга, вызывающая между двумя проводниками силу взаимодействия, равную 2 х 10-7 ньютона на метр длины. (Все научные определения единиц измерения даются в такой строгой формулировке. Причем речь здесь идет о так называемых «идеальных проводниках» бесконечной длины и ничтожно малого поперечного сечения.) Кстати, при силе тока в 1 ампер в любой точке проводника каждую секунду протекает около 6 х 1023 электронов.



АНДРЕ-МАРИ АМПЕР (André Marie Ampère, 1775-1836) — французский физик. Родился в Лионе в семье торговца. Получил домашнее образование, имея доступ к прекрасной семейной библиотеке. (В частности, самостоятельно выучил латынь, чтобы в подлиннике читать труды видных математиков.) Сделал заметную карьеру во французской системе образования, получив при Наполеоне Бонапарте назначение на пост генерального инспектора всей системы университетского образования Франции. В 1827 году опубликована его самая известная работа «Теория электродинамических явлений, выведенная исключительно из опыта», в которой Ампер подытожил свои электродинамические исследования и дал точные математические формулировки.

III до н.э.
Закон Архимеда

Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу вытесненной им жидкости