Джеймс трефил
Вид материала | Закон |
- Джеймс А. Дискретная математика и комбинаторика [Текст] / Джеймс А. Андерсон, 42.79kb.
- Джеймс блиш города в полете 1-4 триумф времени вернись домой, землянин жизнь ради звезд, 10495.38kb.
- Джеймс Н. Фрей. Как написать гениальный роман, 2872.12kb.
- Мюриел Джеймс, Дороти Джонгвард, 4810.7kb.
- Кен Арнольд Джеймс Гослинг, 5058.04kb.
- Джеймс Джодж Бойл. Секты-убийцы (Главы из книги) Перевод с английского Н. Усовой, 844.92kb.
- Джеймс Хэрриот, 3697.74kb.
- В. К. Мершавки Доктор Джеймс Холлис известный юнгианский аналитик, директор Центра, 1972.4kb.
- В. К. Мершавки Доктор Джеймс Холлис известный юнгианский аналитик, директор Центра, 5237.48kb.
- Джеймс Боллард, 2244.23kb.
уильяМ ОККАМ (William of Occam, 1285-1349) — английский философ и богослов. Родился в Оккаме, деревушке в графстве Суррей. Стал монахом-францисканцем, изучал богословие в Оксфордском университете. В 1324 году был обвинен в ереси и оказался вовлечен в споры между орденом францисканцев и
Ватиканом. Уильям закончил свою жизнь в Баварии, написав трактаты о церкви и государстве, в которых выступал против абсолютной власти папы. Первоначально он ввел свою «бритву» для упрощения богословской аргументации.
ок. 420 до н.э.
Броуновское движение
Малые частицы взвеси хаотично движутся под воздействием ударов молекул жидкости
•
•
1662
АТОМНАЯ ТЕОРИЯ ОТРОЕНИЯ ВЕЩЕСТВА
ЗАКОН
1787
БОЙЛЯ—МАРИОТТА
1798
ЗАКОН ШАРЛЯ
1827
МЕХАНИЧЕСКАЯ ТЕОРИЯ ТЕПЛОТЫ
БРОУНОВСКОЕ ДВИЖЕНИЕ
1834
1849
УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА
МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ
ТЕОРИЯ
Во второй половине ХХ века в научных кругах разгорелась нешуточная дискуссия о природе атомов. На одной стороне выступали неопровержимые авторитеты, такие как Эрнст Мах (см. ударные волны), который утверждал, что атомы — суть просто математические функции, удачно описывающие наблюдаемые физические явления и не имеющие под собой реальной физической основы. С другой стороны, ученые новой волны, в частности Людвиг Больцман (см. постоянная больцмана), настаивали на том, что атомы представляют собой физические реалии. И ни одна из двух сторон не сознавала, что уже за десятки лет до начала их спора получены экспериментальные результаты, раз и навсегда решающие вопрос в пользу существования атомов как физической реальности, — правда, получены они в смежной с физикой дисциплине естествознания ботаником Робертом Броуном.
Еще летом 1827 года Броун, занимаясь изучением поведения цветочной пыльцы под микроскопом (он изучал водную взвесь пыльцы растения Clarkia pulchella), вдруг обнаружил, что отдельные споры совершают абсолютно хаотичные импульсные движения. Он доподлинно определил, что эти движения никак не связаны ни с завихрениями и токами воды, ни с ее испарением, после чего, описав характер движения частиц, честно расписался в собственном бессилии объяснить происхождение этого хаотичного движения. Однако, будучи дотошным экспериментатором, Броун установил, что подобное хаотичное движение свойственно любым микроскопическим частицам, — будь то пыльца растений, взвеси минералов или вообще любая измельченная субстанция.
Лишь в 1905 году не кто иной, как Альберт Эйнштейн, впервые осознал, что это таинственное, на первый взгляд, явление служит наилучшим экспериментальным подтверждением правоты атомной теории строения вещества. Он объяснил его примерно так: взвешенная в воде спора подвергается постоянной «бомбардировке» со стороны хаотично движущихся молекул воды. В среднем молекулы воздействуют на нее со всех сторон с равной интенсивностью и через равные промежутки времени. Однако, как бы ни мала была спора, в силу чисто случайных отклонений сначала она получает импульс со стороны молекулы, ударившей ее с одной стороны, затем — со стороны молекулы, ударившей ее с другой и т.д. В результате усреднения таких соударений получается, что в какой-то момент частица «дергается» в одну сторону, затем, если с другой стороны ее «толкнуло» больше молекул — в другую и т.д. Использовав законы математической статистики и молекулярно-кинетической теории газов, Эйнштейн вывел уравнение, описывающее зависимость среднеквадратичного смещения броуновской частицы от макроскопических показателей. (интересный факт: в одном из томов немецкого журнала «Анналы физики» (Annalen der Physik) за 1905 год были опубликованы три статьи Эйнштейна: статья с теоретическим разъяснением броуновского движения, статья об основах специальной теории относитель-
но сти и, наконец, статья с описанием теории фотоэлектрического эффекта. Именно за последнюю Альберт Эйнштейн был удостоен Нобелевской премии по физике в 1921 году.)
В 1908 году французский физик Жан Батист Перрен (Jean-Baptiste Perrin, 1870-1942) провел блестящую серию опытов, подтвердивших правильность эйнштейновского объяснения феномена броуновского движения. Стало окончательно ясно, что наблюдаемое «хаотичное» движение броуновских частиц — следствие межмолекулярных соударений. Поскольку «полезные математические условности» (по Маху) не могут привести к наблюдаемым и совершенно реальным перемещениям физических частиц, стало окончательно ясно, что спор о реальности атомов окончен: они существуют в природе. В качестве «призовой игры» Перрену досталась выведенная Эйнштейном формула, которая позволила французу проанализировать и оценить среднее число атомов и/или молекул, соударяющихся с взвешенной в жидкости частицей за заданный промежуток времени и через этот показатель рассчитать молярные числа различных жидкостей. В основе этой идеи лежал тот факт, что в каждый данный момент времени ускорение взвешенной частицы зависит от числа соударений с молекулами среды (см. законы механики ньютона), а значит, и от числа молекул в единице объема жидкости. А это не что иное, как число Авогадро (см. закон авогадро) — одна из фундаментальных постоянных, определяющих строение нашего мира.
РОБЕРТ БРОУН (Robert Brown, 1773-1858) — шотландский ботаник. Родился в Монтроузе (Montrose) в семье священника. Получил медицинское образование в Эдинбургском университете, работал военно-полевым хирургом. В 1798 году, познакомившись с Джозефом Бэнксом (Joseph Banks, 1743-1820), выдающимся ботаником своего времени, настолько заинтересовался этой наукой, что решил в корне изменить
свою карьеру и достиг в ботанике высот, которым его учитель позавидовал бы. В качестве натуралиста Броун плавал к берегам Австралии. Со временем занял пост главы ботанического отдела Британского музея. Открыл, идентифицировал, классифицировал и изучил морфологию множества растений. Однако прославился прежде всего благодаря открытию им броуновского движения.
Математика
Великая теорема Ферма
m
1630
Для целых чисел п больше 2 уравнение хп + у = іп не имеет ненулевых решений в натуральных числах
ВЕЛИКАЯ ТЕОРЕМА ФЕРМА
Вы, наверное, помните со школьных времен теорему Пифагора: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Возможно, вы помните и классический прямоугольный треугольник со сторонами, длины которых соотносятся как 3 : 4 : S. Для него теорема Пифагора выглядит так:
З2 + 42 = S2.
Это пример решения обобщенного уравнения Пифагора в ненулевых целых числах при n = 2. Великая (ее также называют «Большой теоремой Ферма» или «Последней теоремой Ферма») состоит в утверждении, что при значениях n > 2 уравнения вида х" + у" = zn не имеют ненулевых решений в натуральных числах.
История Великой теоремы Ферма весьма занимательна и поучительна, и не только для математиков. Пьер де Ферма внес вклад в развитие самых различных областей математики, однако основная часть его научного наследия была опубликована лишь посмертно. Дело в том, что математика для Ферма была чем-то вроде хобби, а не профессиональным занятием. Он переписывался с ведущими математиками своего времени, однако публиковать свои работы не стремился. Научные труды Ферма в основном обнаружены в форме частной переписки и обрывочных записей, часто сделанных на полях различных книг. Именно на полях (второго тома древнегреческой «Арифметики» Диофанта. — Прим. переводчика) вскоре после смерти математика потомки и обнаружили формулировку знаменитой теоремы и приписку:
«Я нашел этому поистине чудесное доказательство, но поля эти для него слишком узки».
Увы, судя по всему, Ферма так и не удосужился записать найденное им «чудесное доказательство», и потомки безуспешно искали его три с лишним века. Из всего разрозненного научного наследия Ферма, содержащего немало удивительных утверждений, именно Великая теорема упорно не поддавалась решению.
Кто только не брался за доказательство Великой теоремы Ферма — все тщетно! Другой великий французский математик Рене Декарт (René Descartes, 1S96-16S0) называл Ферма «хвастуном», а английский математик Джон Уоллис (John Wallis, 16161703) — и вовсе «чертовым французом». Сам Ферма, правда, все-таки оставил после себя доказательство своей теоремы для случая n = 4. С доказательством для n = 3 справился великий швейцарско-российский математик XVIII века Леонард Эйлер (1707-83), после чего, не сумев найти доказательств для n > 4, в шутку предложил устроить обыск в доме Ферма, чтобы найти ключ к утерянному доказательству. В XIX веке новые методы теории чисел позволили доказать утверждение для многих целых чисел в пределах 200, однако опять же не для всех.
В 1908 году была учреждена премия в размере 100 000 немецких марок за решение этой задачи. Призовой фонд был завещан гер-
манским промышленником Паулем Вольфскелем (Paul Wolfskehl), который, согласно преданию, собирался покончить жизнь самоубийством, но так увлекся Великой теоремой Ферма, что передумал умирать. С появлением арифмометров, а затем и компьютеров планка значений n стала подниматься все выше — до 617 к началу Второй мировой войны, до 4001 в 1954 году, до 125 000 в 1976 году. В конце XX столетия мощнейшие компьютеры военных лабораторий в Лос-Аламосе (Нью-Мексико, США) были запрограммированы на решение задачи Ферма в фоновом режиме (по аналогии с режимом экранной заставки персонального компьютера). Таким образом удалось показать, что теорема верна для невероятно больших значений x, y, z и n, но строгим доказательством это послужить не могло, поскольку любые следующие значения n или тройки натуральных чисел могли опровергнуть теорему в целом.
Наконец в 1994 году английский математик Эндрю Джон Уайлс (Andrew John Wiles, р. 1953), работая в Принстоне, опубликовал доказательство Великой теоремы Ферма, которое после некоторых доработок было признано исчерпывающим. Доказательство заняло более ста журнальных страниц и основывалось на использовании современного аппарата высшей математики, который в эпоху Ферма разработан не был. Так что же тогда имел в виду Ферма, оставляя на полях книги сообщение о том, что доказательство им найдено? Большинство математиков, с которыми я беседовал на эту тему, указывали, что за века накопилось более чем достаточно некорректных доказательств Великой теоремы Ферма, и что, скорее всего, сам Ферма нашел подобное доказательство, однако не сумел усмотреть в нем ошибку. Впрочем, не исключено, что все-таки имеется какое-то короткое и изящное доказательство Великой теоремы Ферма, которое никто до сих пор не нашел. С уверенностью можно утверждать лишь одно: сегодня мы точно знаем, что теорема верна. Большинство математиков, я думаю, безоговорочно согласятся с Эндрю Уайлсом, который заметил по поводу своего доказательства: «Теперь наконец мой ум спокоен».
ПЬЕР ДЕ ФЕРМА (Pierre de Fermât, 1601-65) — французский математик и юрист. Родился в Бомон-де-Ломань (Beaumont-de-Lomagne). Изучал право, работал судьей. В свободное время увлекался математикой и внес значительный вклад в развитие различных отраслей этой науки, за что получил прозвище «король любителей». Помимо теории чисел (так называется область математики, к которой относится Великая теорема
Ферма) еще до Ньютона разработал многие основы дифференциального исчисления,а совместно с Блезом Паскалем (Blaise Pascal, 1623-62) основал теорию вероятностей. В оптике сформулировал принцип ферма, согласно которому преломление света на границе двух сред обусловлено различной скоростью распространения света в различных средах.
Вечный двигатель
Можно построить двигатель, который будет работать вечно или еще лучше, который будет неиссякаемым источником энергии
Свойственное человеческой натуре упрямство не дает людям смириться с непреложностью законов природы. Самым ярким свидетельством этому служит настойчивая вера в то, что можно построить вечный двигатель — двигатель, который будет работать бесконечно долгое время без какой-либо внешней помощи. Как ученый, занимающийся еще и общественной деятельностью, я каждый год получаю хотя бы одно письмо, уведомляющее о проекте создания такого двигателя. Иногда авторы писем предлагают мне проценты от доходов, которые можно будет получить от такого двигателя, если я обращу на него внимание соответствующих организаций.
Существует два типа вечных двигателей — те, что нарушают и первое, и второе начала термодинамики, и те, что нарушают только второе из них. Вот пример двигателя первого типа: металлический шар, расположенный между северным и южным полюсами магнита. Тяжелый металлический экран заслоняет шар от северного полюса, поэтому, если шар отпустить, он начнет двигаться к южному полюсу. При приближении его к южному полюсу металлический экран у северного полюса поднимается, в то время как другой экран между шаром и южным полюсом опускается. Шар меняет направление движения, начиная катиться обратно к северному полюсу. Точно в нужный момент экран у северного полюса падает, и шар начинает катиться обратно к южному полюсу. Как предположительно должен работать двигатель? Энергия извлекается из катящегося шара, и, если экраны расположены на концах такого балансира, на их поднимание и опускание энергия не тратится.
Недостаток этого двигателя в том, что если металлический экран движется в магнитном поле, то, согласно закону электромагнитной индукции фарадея, в металле обязательно возникнет электрический ток. Это означает, что будет происходить утечка энергии из системы вследствие работы закона ома. Легко видеть, что, если магниты достаточно сильны, чтобы заставить шар двигаться, они будут также достаточно сильны, чтобы вызывать большие потери сопротивления в металлических экранах при их опускании, поэтому двигатель, который на бумаге выглядит столь привлекательно, просто не будет работать.
Некоторые изобретатели предлагали более сложные вечные двигатели, и требовалось более тонкое понимание вопроса, чтобы увидеть изъяны в их конструкции. Но изъяны находятся всегда, вот почему ни одного такого двигателя мы не видели в работе. В середине ХХ века этот факт был признан Патентным бюро США. измученное потоком патентных заявок на вечные двигатели, бюро объявило, что в будущем любая такая заявка должна сопровождаться работающей моделью. С тех пор заявители его больше не беспокоили.
вечный двигатель
58
ЦЕНТРАЛЬНАЯ ДОГМА
МОЛЕКУЛЯРНОЙ
БИОЛОГИИ
Витализм
Существует особая сила, благодаря которой в биологических системах образуются молекулы
Древний • САМОЗАРОЖДЕНИЕ мир ЖИЗНИ
1828 • СИНТЕЗ МОЧЕВИНЫ
XIX — • ВИТАЛИЗМ
•
нач. XX
1958
В начале XIX века в развитии химии был достигнут большой прогресс. ПереОСМЫСЛеННаЯАТОМНАЯ ТЕОРИЯ СТРОЕНИЯ ВЕЩЕСТВА
помогла понять сложный состав большинства найденных в природе веществ. Оставалась одна проблема — казалось, что многие молекулы существуют только в биологических системах. Поэтому химики заговорили о так называемой «жизненной силе», присущей только живым организмам. Считалось, что благодаря этой силе возникают молекулы, которые не могут быть воспроизведены в неживой природе.
Типичным примером таких органических молекул может служить вещество под названием мочевина. Молекулы мочевины имеют химическую формулу СО(ЪГН2)2. С их помощью у большинства животных происходит выделение неусвоенного азота, поступившего с пищей. К примеру, человеческая моча содержит 2-5% мочевины.
В 1828 году Фридрих Вёлер совершил важный прорыв, синтезировав мочевину в лаборатории из стандартных химикатов. Его открытие было убедительным доказательством того, что для создания органических молекул не требуется никакой жизненной силы и что они образуются по тем же законам, что и любые другие молекулы. После работ Вёлера понятие жизненной силы полностью исчезло со сцены.
С юмором (наличие которого обычно не предполагают в немецких ученых-академистах) Вёлер в письме другу рассказал о своем открытии следующими словами: «Я больше не могу, образно говоря, сдерживать свою химическую мочу, и должен сообщить, что я произвожу мочевину без помощи почки, человеческой или собачьей».
В действительности же идеи витализма (представления о жизненной силе) не так-то легко похоронить. Чтобы покончить с ними раз и навсегда, недостаточно только привести очевидные факты. Так, многие идеи «нового времени» являются почти не замаскированным витализмом. В 1930-е годы нечто похожее на витализм, но в более респектабельном виде, обозначилось в дискуссиях по поводу открытия очень сложных биологических молекул (их примером служит ДНК). Утверждалось, что законы, управляющие поведением атомов в сложных и простых молекулах, могут различаться. Поскольку в то время ученые еще мало работали со сложными молекулами, эту гипотезу нельзя было опровергнуть. Позже выяснилось, что это утверждение неверно: атомы водорода в молекуле ДНК подчиняются тем же законам, что и атомы водорода в любых других молекулах. По крайней мере, в этом случае оказалось, что природа устроена просто.
ВИТАЛИЗМ
59
Науки о жизни
1920-е
1970-е
Генетический код
Три пары оснований молекулы ДНК кодируют одну аминокислоту в белке
•
1865
1908
ЗАКОНЫ МЕНДЕЛЯ ЗАКОН
•
1953
ХАРДИ—ВАЙНБЕРГА ДРЕЙФ ГЕНОВ
нач. 1960-х
ДНК
1961
РОДСТВЕННЫЙ ОТБОР
ГЕНЕТИЧЕСКИЙ КОД
2000
МОЛЕКУЛЯРНЫЕ ЧАСЫ
ПРОЕКТ «ГЕНОМ ЧЕЛОВЕКА»
Сегодня ни для кого не секрет, что программа жизнедеятельности всех живых организмов записана на молекуле ДНК. Проще всего представить молекулу ДНК в виде длинной лестницы. Вертикальные стойки этой лестницы состоят из молекул сахара, кислорода и фосфора. Вся важная рабочая информация в молекуле записана на перекладинах лестницы — они состоят из двух молекул, каждая из которых крепится к одной из вертикальных стоек. Эти молекулы — азотистые основания — называются аденин, гуанин, тимин и цитозин, но обычно их обозначают просто буквами А, Г, Т и Ц. Форма этих молекул позволяет им образовывать связи — законченные ступеньки — лишь определенного типа. Это связи между основаниями А и Т и между основаниями Г и Ц (образованную таким образом пару называют «парой оснований»). Других типов связи в молекуле ДНК быть не может.
Спускаясь по ступенькам вдоль одной цепи молекулы ДНК, вы получите последовательность оснований. Именно это сообщение в виде последовательности оснований и определяет поток химических реакций в клетке и, следовательно, особенности организма, обладающего данной ДНК. Согласно центральной догме молекулярной биологии, на молекуле ДНК закодирована информация о белках, которые, в свою очередь, выступая в роли ферментов (см. катализаторы и ферменты), регулируют все химические реакции в живых организмах.
Строгое соответствие между последовательностью пар оснований в молекуле ДНК и последовательностью аминокислот, составляющих белковые ферменты, называется генетическим кодом. Генетический код был расшифрован вскоре после открытия двуспиральной структуры ДНК. Было известно, что недавно открытая молекула информационной, или матричной РНК (иРНК, или мРНК), несет информацию, записанную на ДНК. Биохимики Маршалл Уоррен Ниренберг (Marshall W. Nirenberg) и Дж. Генрих Маттеи (J. Heinrich Matthaei) из Национального института здравоохранения в городке Бетезда под Вашингтоном, округ Колумбия, поставили первые эксперименты, которые привели к разгадке генетического кода.
Они начали с того, что синтезировали искусственные молекулы иРНК, состоявшие только из повторяющегося азотистого основания урацила (который является аналогом тимина, Т, и образует связи только с аденином, А, из молекулы ДНК). Они добавляли эти иРНК в тестовые пробирки со смесью аминокислот, причем в каждой пробирке лишь одна из аминокислот была помечена радиоактивной меткой. исследователи обнаружили, что искусственно синтезированная ими иРНК инициировала образование белка лишь в одной пробирке, где находилась меченая аминокислота фенилаланин. Так они установили, что последовательность -У-У-У- на молекуле иРНК (и, следовательно, эквивалентную ей последовательность -А-А-А- на молекуле ДНК) кодирует белок, состоящий только из аминокис-
лоты фенилаланина. Это было первым шагом к расшифровке генетического кода.
Сегодня известно, что три пары оснований молекулы ДНК (такой триплет получил название кодон) кодируют одну аминокислоту в белке. Выполняя эксперименты, аналогичные описанному выше, генетики в конце концов расшифровали весь генетический код, в котором каждому из 64 возможных кодонов соответствует определенная аминокислота.
Астрономия
Гипотеза газопылевого облака
Солнечная система образовалась в результате сжатия газопылевого облака
1736 • ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА
1755 • ГИПОТЕЗА
ГАЗОПЫЛЕВОГО ОБЛАКА
XX • эволюция ЗВЕЗД
1940 • ГИПОТЕЗА
ГИГАНТСКОГО СТОЛКНОВЕНИЯ
Гипотезы о том, как сформировалась Солнечная система, относятся к области космогонии — одного из старейших разделов теоретической астрономии. Первым такую гипотезу, исходя из общих умозрительных соображений, выдвинул немецкий философ Иммануил Кант (Immanuel Kant, 1724-1804), однако по-настоящему научное развитие она получила в трудах Пьера Симона Лапласа, первым предпринявшего попытку объяснить механику образования Солнечной системы в рамках закона всемирного тяготения ньютона.
В начале сценария предполагается наличие газопылевой туманности. По чистой случайности отдельные области этой туманности оказываются плотнее окружающего их вещества и, следовательно, обладают большей массой. Тут в действие вступает сила тяготения, и окружающая материя начинает устремляться к этим центрам повышенной плотности, масса которых все возрастает. В конечном итоге материя в области каждого такого центра уплотняется настолько, что в результате гравитационного коллапса в каждой такой точке образуется звезда. Сегодня астрономы наблюдают в нашей Галактике достаточно много подобных центров формирования звезд.
В целом, остаточное газопылевое облако вокруг формирующейся звезды ведет себя хаотично, и частицы материи движутся внутри него во всех направлениях. и тут, опять же по чистой случайности, может оказаться, что большая часть газа и пыли оказываются «закрученными» в одну сторону. Соответственно, газопылевое облако вокруг формирующейся звезды приобретает чистый угловой момент количества движения. В соответствии с законом сохранения момента импульса дальнейшее сжатие (конденсация) облака в направлении центра приводит к увеличению угловой скорости вращения материи вокруг центральной части. В итоге после завершения стадии коллапса газопылевого облака, подавляющая часть его массы оказывается сосредоточенной в центре (где впоследствии сформируется звезда), а незначительная периферийная масса облака оказывается распределенной в экваториальной плоскости вращения протозвезды вокруг собственной оси. Происходит это в результате «сплющивания» остатков распыленного раскрученного вещества под действием центробежной силы. из вещества этого остаточного диска в дальнейшем формируются планеты.
В окружающем протозвезду остаточном газопылевом диске в результате хаотичных соударений частиц также начинают формироваться сгустки материи, которые в свою очередь начинают служить центрами притяжения для распыленного вокруг вещества. Вокруг них сначала формируются протопланеты, которые также выступают в роли источников гравитационного притяжения, в результате чего околосолнечное вещество расслаивается в кольца, а затем собирается в сгустки на определенных орбитах, из которых в конечном итоге и формируются планеты. Типоразмеры планет зависят от расстояния до новорожденной звезды. На небольшом
удалении от нее температуры из-за начавшейся внутри звезды термоядерной реакции (см. эволюция звезд) оказываются слишком высокими, и все легкоплавкие летучие вещества в основном просто испаряются в пространство, не имея возможности сконденсироваться в жидкое или твердое состояние. В результате ближние планеты земного типа оказываются небольшими и относительно плотными из-за преобладания в их составе тяжелых химических элементов — в Солнечной системе к этой категории относятся Меркурий, Венера, Земля и Марс.
Вообще, этот период в эволюции Солнечной системы выглядит несколько странно, если исходить из основных современных гипотез и результатов компьютерного моделирования, полученных согласно этим гипотезам. С одной стороны, накопление вещества вокруг ядер-зародышей современных планет действительно должно было происходить в соответствии с вышеописанной моделью; с другой — такое моделирование предсказывает образование еще 10-12 планет размером с Марс. Сегодня выдвигается гипотеза, что эти протопланеты попросту рассыпались в результате затяжной партии в небесный бильярд, в которую они оказались втянутыми, после чего часть их вещества осела на «успешно» сформировавшихся планетах, избежавших разрушения в результате череды соударений, а часть вещества была буквально вышвырнута на периферию Солнечной системы под воздействием мощного гравитационного поля Юпитера. Таким образом, в нашей Солнечной системе, скорее всего, до сих пор кружится, по большей части на большом удалении от Солнца, значительная масса про-топланетных тел.
Луна — естественный спутник Земли — часто также классифицируется астрономами как самостоятельная планета земного типа, однако последние данные свидетельствуют, скорее, в пользу гипотезы гигантского столкновения, согласно которой Луна сформировалась позже других планет земного пояса в результате падения на раннюю Землю еще одной планеты размером с Марс и последующего выброса вещества на околоземную орбиту. Вообще, подобные столкновения на ранней стадии формирования Солнечной системы были явлением распространенным. Это, кстати, объясняет и еще одну загадку Солнечной системы. Угловые скорости вращения планет вокруг собственной оси (иными словами, продолжительность солнечных «суток» на планетах) варьируют в весьма широких пределах. В случае Венеры наблюдается уникальное явление ретроградного суточного вращения: эта планета вращается в противоположную по сравнению со всеми прочими планетами сторону. Такое отличие трудно увязать с размеренным, упорядоченным формированием планетной системы. Однако, если предположить, что итоговое собственное вращение планеты вокруг оси сложилось в результате суммы импульсов, полученных ею в результате мощных соударений с другими протопланетами, все становится на свои места.
На большем удалении от молодого Солнца на ранней стадии формирования планетной системы было не так жарко, и там сформировались планеты иного типа. Достаточно низкие температуры не препятствовали конденсации и кристаллизации относительно легких химических элементов, в результате чего сформировались сверхмассивные твердокристаллические ядра из скальных пород и льда. Обладая мощным гравитационным полем, они захватили из окрестных газопылевых скоплений значительные объемы легких и летучих веществ — гелия и водорода, образовавших их океаны и/или атмосферу, — и стали еще массивнее (планеты земного типа с их слабым гравитационным полем на это оказались не способны). К категории так называемых газовых гигантов нашей Солнечной системы относятся Юпитер, Сатурн, Уран и Нептун. При огромных по сравнению с планетами земного типа размерах эти планеты характеризуются очень низкой средней плотностью вещества. Плотность Сатурна, например, вообще ниже плотности воды, так что, если бы нашелся океан сопоставимых с этой планетой размеров, Сатурн плавал бы в нем, как поплавок. Тем не менее, согласно современным гипотезам, внутри этих газожидкостных гигантов все-таки есть достаточно массивное плотное ядро из твердого вещества, напоминающее собой планету земного типа и образовавшееся аналогичным образом.
Особый случай представляет собой Плутон, — последняя из открытых «настоящих» планет Солнечной системы. По размеру он сопоставим с планетами земной группы и представляет собой, по сути, огромную глыбу льда летучих элементов. Долгое время ученые считали Плутон не то курьезным недоразумением, не то захваченным Солнечной системой инородным телом. Однако открытие в 1990-х годах так называемого «пояса Койпера», подобного поясу астероидов, — еще одного пояса малых планет, многие из которых движутся по очень вытянутым, «неправильным» орбитам, — заставило астрофизиков пересмотреть свои взгляды. Расположенный за орбитой Нептуна пояс Койпера — основной «поставщик» комет, залетающих в окрестности Солнца. Согласно современным взглядам, Плутон скорее всего представляет собой все-таки самое крупное небесное тело пояса Койпера — зародыш так и не сформировавшейся крупной планеты, вращающийся среди миллионов более мелких «отбросов» Солнечной системы.
Такая картина формирования планетной системы хорошо объясняет многие наблюдаемые характеристики Солнечной системы: небольшие размеры, тяжелый элементный состав и конденсированное состояние внутренних планет; большие размеры, легкий элементный состав и жидкостно-газообразное состояние внешних планет; единое направление движения планет по орбитам вокруг Солнца. В 1995 году астрономами были получены первые доказательства существования планетных систем у других звезд и выяснены некоторые их характеристики (это удалось сделать по замерам циклических отклонений звезд от их среднестатистичес
кого положения в пространстве, вызванных силой гравитационного притяжения обращающихся вокруг них планет). Благодаря этому сегодня мы точно знаем о том, что за пределами Солнечной системы планет существует гораздо больше, чем внутри нее: на момент написания этой статьи открыто 83 планеты в 71 звездной системе (теперь, когда вы читаете эти строки, число открытых планет еще возросло). Однако лишь одна из открытых планетных систем похожа на нашу Солнечную систему. Во всех остальных, судя по всему, планеты движутся вокруг своей звезды по сильно вытянутым эллиптическим траекториям, в то время как в нашей Солнечной системе орбиты всех планет, за исключением Плутона, приближаются к круговым. Кроме того, в большинстве этих систем все планеты обращаются вокруг звезд на расстояниях, не превышающих радиус орбиты Меркурия. У некоторых планет период обращения вокруг их солнца и вовсе составляет всего несколько земных суток.
Кроме планетных систем астрономам на сегодняшний день удалось открыть целый ряд околозвездных дисков — сплющенных газопылевых облаков вокруг молодых звезд. А это служит хорошим подтверждением гипотезы образования планетных систем из газопылевых облаков, пусть даже планетных систем, подобных нашей, открыты лишь считанные единицы.
Пьер Симон ЛАПЛАС (Pierre Simon Marquis de Laplace, 1749-1827) — французский математик, физик и астроном. Родился в семье фермера в местечке Бомон-ан-Ож (Beaumont-en-Auge). Благодаря рано проявленным способностям и благоволению крупного поместного дворянина, у которого отец будущего ученого арендовал землю, окончил местную школу Ордена монахов-бенедиктинцев, после чего получил возможность продолжить образование в университете г. Кан (Caen). В дальнейшем ученый внес огромный вклад в развитие математической физики в рамках классической механики Ньютона, применил закон всемирного тяго -тения ньютона к теории строения Солнечной системы. Вскоре после Великой французской революции был
исключен из Академии «за недостаток республиканской добродетели и ненависти к королям» и в 1793 году бежал с семьей из Парижа и, находясь, фактически, на нелегальном положении, написал научно-популярную книгу «Изложение системы мира», где и сформулировал свою гипотезу происхождения Солнечной системы. По завершении периода якобинского террора, вернувшись в Париж, опубликовал монументальный многотомный труд «Трактат о небесной механике» (Traité de méchanique céleste, 1796), заложивший основы нового раздела физической науки, который с тех пор так и именуется «небесной механикой». При Наполеоне занимал видные государственные посты, вплоть до поста министра внутренних
дел.
Гипотеза Геи
•
1783
Земля представляет собой единый живой организм
круговорот углерода в природе
кон. XVIII • цикл
преобразования горной породы
1886 • кРУГОВОРОт АЗОтА
в природе
кон. XIX • круговорот воды в природе
1910-е • циклы
МилАНкОВичА
1960-е • тектоника Плит
1979 • ГИПОТЕЗА ГЕИ
Гея — греческая богиня, которая вывела мир из хаоса. Гипотезу Геи выдвинул английский ученый Джеймс Давлок, работавший в НАсА в начале 1960-х годов, в период, когда только начинались поиски жизни в Солнечной системе. Исходя из того факта, что земная атмосфера значительно отличается от атмосфер безжизненных планет, Давлок утверждал, что наша планета и ее биосфера представляют собой некий живой организм. Он говорил: «Земля — больше, чем просто дом, это живой организм, и мы являемся его частью».
Как относиться к этой гипотезе, непонятно. Ведь в ней нет четко определенных выводов, которые можно было бы проверить экспериментально, а такая проверка требуется любой научной теории. Некоторые (в том числе и автор этих строк) считают, что эту гипотезу лучше рассматривать как литературную метафору — возможно, полезную при рассуждении о планетах, но недостаточно точную. Но у нее есть и свои приверженцы среди серьезных ученых (например, американский биолог Динн Маргулис).
сторонники гипотезы отмечают, что она предполагает наличие механизма обратной связи со стороны живых организмов, благодаря чему планета остается пригодной для жизни. Приводится такой пример: повышение содержания углекислого газа в атмосфере приводит к усилению роста растений, что в свою очередь снижает уровень углекислого газа. Однако эти механизмы обратной связи хорошо известны и для их объяснения не требуется гипотеза Геи.
Значение же гипотезы состоит в том, что она способствовала развитию системного подхода к изучению Земли, при котором планета рассматривается как единое целое, а не как набор отдельных частей. Действительно, развитие наук о Земле в последние десятилетия ХХ века стимулировалось пониманием того, что различные части планеты — например, горные породы или океаны — нельзя исследовать в отрыве друг от друга. Именно поэтому соответствующие факультеты в американских университетах стали чаще называться факультетами науки о земных системах, а не геологическими, как раньше. Во многом эта перемена была вызвана прогрессом в развитии вычислительной техники, но и гипотеза Геи также внесла свой вклад.
ДЖЕЙМС ЭФРАИМ ЛАВЛОК (James Ephraim Lovelock, р. 1919) — английский ученый, родился в Лондоне. После окончания учебы работал в Национальном институте медицинских исследований. Затем, недолгое время проработав в НАСА, в 1964 году Лавлок объявил себя независимым ученым, свободным от
любых ограничений, связанных с влиянием международных компаний на направление научных исследований. два года спустя обнаружил присутствие в атмосфере хлорфторуглеродов (хФУ) (см. парниковый эффект). Яавлок стал широко известен благодаря гипотезе, впервые выдвинутой им в книге «Гея» (1979).
Гипотеза гигантского столкновения
Возможно, Луна образовалась в результате столкновения Земли с небесным телом, масса которого превышала массу Марса
1755 • гипотеза
газопылевого облака
1900 • радиоактивный распад
1940 ГиПОтЕЗА
гигантского столкновения
1960-е ТЕКТОНИКА ПЛИТ
среди всех внутренних планет солнечной системы Земля единственная имеет крупный спутник. Происхождение Дуны — одна из древнейших загадок астрономии, однако многие планетологи сегодня считают ее наконец-то решенной. сначала вопрос стоял следующим образом: почему средняя плотность лунного вещества в 1,5 с лишним раза ниже средней плотности земного при практически одинаковом химическом составе того и другого (3,6 против 5,5 ед. плотности воды)? После того как был получен ответ, согласно которому причина такого несоответствия заключается в отсутствии у Дуны в отличие от Земли плотного раскаленного железного ядра, вопрос встал по-другому: почему столь схожие по составу небесные тела — Земля и Дуна — имеют столь различную внутреннюю структуру?
Согласно гипотезе газопылевого обдака, планетные тела образуются из околозвездного вещества, распределенного в плоскости околосолнечной дисковой туманности, и, как следствие, должны обладать приблизительно одним и тем же химическим составом. Первоначальные теории происхождения Дуны можно условно подразделить на две категории: теории захвата и приливные теории.
Первая и самая древняя из них подразумевала, что Дуна представляет собой независимо сформировавшуюся в солнечной системе планету, оказавшуюся в непосредственной близости от Земли и захваченную ею в качестве спутника. однако эта теория не выдерживает сегодня никакой критики, поскольку динамика процесса захвата, в результате которого тело, двигавшееся по независимой гелиоцентрической орбите вокруг солнца, могло бы перейти на геоцентрическую и практически круговую орбиту вокруг Земли, противоречит всем известным физическим законам.
Конкурирующая приливная теория предполагала, что Земля в далеком прошлом вращалась вокруг своей оси значительно быстрее, чем сегодня, в результате чего на поверхности планеты возбуждались мощные центробежные силы, под воздействием которых (согласно большинству приливных теорий, их действие было усугублено гравитационным воздействием пролетавшего в непосредственной близости от Земли крупного небесного тела) от нашей планеты оторвался крупный кусок, который и оказался, в конечном итоге, на стационарной орбите вокруг Земли. Выдвигались даже гипотезы, будто Тихоокеанская впадина на поверхности Земли представляет собой «послеродовую травму», понесенную нашей планетой в результате рождения Луны.
исследования химического состава лунного вещества, однако, опровергают обе вышеописанные гипотезы. с одной стороны, Луна слишком близка к Земле по своему химическому составу, чтобы сформироваться вдали от нашей планеты; с другой — недостаточно близка, чтобы быть ее осколком.
В последние десятилетия ХХ века, однако, появилась и еще одна гипотеза, завоевавшая достаточное признание в научных
кругах. На раннем этапе формирования солнечной системы Земля и другие недавно сформировавшиеся планетные тела, будучи, по сути, еще практически целиком жидкими и состоящими из магмы современных геологических пород, подвергались интенсивной бомбардировке множеством более мелких новообразовавшихся тел размером с современные крупные астероиды. Кинетическая энергия падающих на Землю тел была столь высока, что, преобразуясь в тепловую, она поддерживала земное вещество в расплавленном состоянии, в результате чего и происходила его дальнейшая дифференциация: тяжелые железо и никель тонули в направлении центра Земли и формировали ее ядро, а более легкие вещества, шлаки и соли всплывали, образуя мантию и прообраз горных пород будущей земной коры (см. тектоника плит). именно на этой стадии или несколько позже, пока земная кора еще до конца не оформилась, в Землю врезалось небесное тело размером не меньше Марса. В результате этого катаклизма на околоземную орбиту оказалось буквально выплеснуто значительное количество вещества земной мантии и коры, из которых вскоре и сформировалась луна.
Эта теория, получившая название гипотезы гигантского столкновения (а неформально — гипотезы большого выплеска), объясняет и низкую плотность лунного вещества, и близость его химического состава к химическому составу вещества земной коры и мантии, поскольку земное ядро гигантским столкновением затронуто не было и на орбиту не попало. Решающие доводы в пользу этой гипотезы поступили на Землю вместе с образцами лунного грунта, доставленными американскими астронавтами из лунных экспедиций на борту «Аполлонов». В результате анализа соотношения различных изотопов кислорода (см. радиоактивный распад) в них удалось установить точное совпадение возраста лунных и земных минералов.
Гликолиз и дыхание
В основе метаболизма животных и других организмов лежат химические процессы извлечения энергии, накопленной углеводами
1729, • СУТОЧНЫЕ РИТМЫ сер. XX
Х1Х-ХХ • РАСПРОСТРАНЕНИЕ НЕРВНЫХ ИМПУЛЬСОВ
1937 • ГЛИКОЛИЗ И ДЫХАНИЕ
сер. • ИММУННАЯ СИСТЕМА 1960-х
В процессе фотосинтеза солнечная энергия запасается в химических связях углеводных молекул, из которых наиболее важную роль играет шестиуглеродный сахар — глюкоза. После того как другие живые организмы используют эти молекулы в пищу, запасенная энергия выделяется и используется для метаболизма. Это происходит во время процессов гликолиза и дыхания. Весь химический процесс можно коротко описать так:
глюкоза + кислород — углекислый газ + вода + энергия
Чтобы лучше понять эти процессы, представьте себе, что организм «сжигает» углеводы, чтобы получить энергию.
Термин «гликолиз» образован при соединении слова лизис, означающего «расщепление», со словом глюкоза. Как следует из названия, процесс начинается с химического извлечения энергии посредством расщепления молекулы глюкозы на две части, каждая из которых содержит три атома углерода. В процессе гликолиза из каждой молекулы глюкозы получается две трехуглеродные молекулы пировиноградной кислоты. Кроме того, энергия глюкозы запасается в молекулах (см. биологические молекулы), которые мы называем «энергетической валютой» клетки, — двух молекулах АТФ и двух молекулах НАДФ. Таким образом, уже на первой стадии гликолиза энергия высвобождается в такой форме, которая может быть использована клетками организма.
Дальнейший ход событий зависит от наличия или отсутствия кислорода в среде. При отсутствии кислорода пировиноградная кислота превращается в другие органические молекулы в ходе так называемых анаэробных процессов. Например, в клетках дрожжей пировиног-радная кислота превращается в этанол. У животных, к которым относится и человек, при истощении запасов кислорода в мышцах пиро-виноградная кислота превращается в молочную кислоту — именно она вызывает так хорошо знакомое всем нам ощущение мышечной скованности после тяжелой физической нагрузки.
При наличии же кислорода энергия выделяется в процессе аэробного дыхания, когда пировиноградная кислота расщепляется на молекулы углекислого газа и воды с одновременным высвобождением оставшейся энергии, запасенной в углеводной молекуле. Дыхание происходит в специализированной клеточной орга-нелле — митохондрии. Вначале отщепляется один углеродный атом пировиноградной кислоты. При этом образуется углекислый газ, энергия (она запасается в одной молекуле НАДФ) и двухуглеродная молекула — ацетильная группа. Затем реакционная цепь поступает в метаболический координационный центр клетки — цикл Кребса.
Цикл Кребса (его также называют циклом лимонной кислоты или циклом трикарбоновых кислот) является примером хорошо знакомого в биологии явления—химической реакции, которая начинается, когда определенная входящая молекула соединяется с другой молекулой, выполняющей функцию «помощника». Такая комбинация инициирует серию других химических реакций, в которых образуются моле-
Цикл Кребса — это повторяющаяся последовательность биохимических реакций, происходящих в процессе дыхания животных, растений и многих микроорганизмов. Здесь изображен его упрощенный вариант. Числа в скобках означают количество углеродных атомов в каждой органической молекуле
кулы-продукты и в конце воссоздается молекула-помощник, которая может начать весь процесс вновь. В цикле Кребса роль входящей молекулы играет ацетильная группа, образующаяся при расщеплении пировиноградной кислоты, а роль молекулы-помощника — четырех-углеродная молекула щавелевоуксусной кислоты. Во время первой химической реакции цикла эти две молекулы соединяются с образованием шестиуглеродных молекул лимонной кислоты (этой кислоте цикл обязан одним из своих названий). Далее происходят восемь химических реакций, в которых сначала образуются молекулы-переносчики энергии и углекислый газ, а затем новая молекула щавеле-воуксусной кислоты. Для переработки энергии, запасенной в одной молекуле глюкозы, цикл Кребса нужно пройти дважды. Чистая прибыль оказывается равной двум молекулам АТФ, четырем молекулам углекислого газа и десяти другим молекулам-переносчикам энергии (о них немного позже). Углекислый газ, в конечном счете, диффундирует из митохондрии и выделяется при выдохе.
Цикл Кребса принципиально важен для жизни не только потому, что в нем образуется энергия. Помимо глюкозы в него могут вступать многие другие молекулы, также образующие пирови-ноградную кислоту. Например, когда вы соблюдаете диету, организму не хватает потребляемой вами глюкозы для поддержания метаболизма, поэтому в цикл Кребса, после предварительного расщепления, вступают липиды (жиры). Вот почему вы теряете вес. Кроме того, молекулы могут покидать цикл Кребса, чтобы принять участие в построении новых белков, углеводов и липидов. Таким образом, цикл Кребса может принимать энергию, сохраненную в разной форме во многих молекулах, и создавать на выходе разнообразные молекулы. С энергетической точки зрения чистый результат цикла Кребса состоит в том, чтобы завершить извлечение энергии, запасенной в химических связях глюкозы, передать небольшую часть этой энергии молекулам АТФ и запасти остальную энергию в других молекулах-переносчиках энергии. (Говоря об энергии химических связей, не надо забывать, что для разделения соединенных атомов необходимо совершить работу.) На заключительном этапе дыхания эта оставшаяся энергия высвобождается из молекул-переносчиков и также запасается в АТФ. Молекулы, запасающие энергию, перемещаются внутри митохондрии, пока не столкнутся со специализированными белками, погруженными во внутренние мембраны митохондрии. Эти белки отнимают электроны у переносчиков энергии и начинают передавать их по цепи молекул — наподобие
цепочки людей, передающих ведра с водой на пожаре, — извлекая энергию, запасенную в химических связях. Извлеченная на каждом этапе энергия запасается в форме АТФ. На последнем этапе электроны соединяются с атомами кислорода, которые далее объединяются с ионами водорода (протонами), образуя воду. В цепи переноса электронов образуется не менее 32 молекул АТФ — 90% энергии, хранившейся в исходной молекуле глюкозы.
Превращение энергии в цикле Кребса включает в себя довольно сложный процесс хемиосмотического сопряжения. Этот термин указывает на то, что в высвобождении энергии наряду с химическими реакциями участвует осмос — медленное просачивание растворов через органические перегородки. По сути дела, электроны с переносчиков энергии, являющихся продуктом цикла Кребса, переносятся по транспортной цепочке и поступают на белки, погруженные в мембрану, которая разделяет внутренний и внешний компартменты (отсеки) митохондрии. Энергия электронов используется для перемещения ионов водорода (протонов) во внешний компартмент, служащий «энергохранилищем» — наподобие водохранилища, образовавшегося перед плотиной. При оттоке протонов через мембрану энергия используется для образования АТФ, подобно тому как вода перед плотиной используется для производства электричества при падении на генератор. Наконец, во внутреннем компартменте митохондрии ионы водорода соединяются с молекулами кислорода с образованием воды — одного из конечных продуктов метаболизма.
Этот рассказ о гликолизе и дыхании иллюстрирует, насколько далеко зашли современные представления о живых системах. Простое высказывание о конкретном процессе — например, что для метаболизма необходимо «сжигать» углеводы — влечет за собой невероятно подробное описание сложных процессов, происходящих на молекулярном уровне и с участием огромного количества различных молекул. Осмысление современной молекулярной биологии в чем-то сродни чтению классического русского романа: вам легко понять каждое взаимодействие между персонажами, но, дойдя до страницы 1423, вы вполне можете забыть, кем приходится Петр Петрович Алексею Алексеевичу. Точно так же каждая химическая реакция в только что описанной цепи кажется понятной, но, дочитав до конца, вы будете поражены непостижимой сложностью процесса. В качестве утешения замечу, что я чувствую себя так же.