«Российский государственный педагогический университет им. А. И. Герцена»

Вид материалаАвтореферат
В первом параграфе
Во втором параграфе
Подобный материал:
1   2   3   4   5

Первая глава «Парадоксальность как характерная черта физического мышления» посвящена теоретическому обоснованию положения о необходимости развития парадоксальности физического мышления при обучении физике.


В первом параграфе на широком историческом материале проведен комплексный гносеологический анализ понятия мышления, как философской категории. Мышление – высшая форма активного отражения объективной реальности, состоящая в целенаправленном, опосредствованном и обобщенном познании субъектом существенных связей и отношений предметов и явлений, в творческом созидании новых идей, в прогнозировании событий и действий. Возникает и реализуется в процессе постановки и решения практических и теоретических проблем.

Мышление носит категориальный характер, поскольку знание, приобретенное в процессе исторического развития практики и познания, закрепляется в категориях. Постижение объективной действительности осуществляется посредством форм мышления – понятий, суждений, умозаключений. По мере развития общественной практики и познания изменяется логический образ эпохи, совершенствуется категориальная структура мышления, оно обогащается новыми категориями и понятиями, отражающими процесс постижения объективной истины. Сложные процессы в современном общественном развитии и научном познании требуют утверждения нового мышления, для которого характерны теоретическая смелость, целостный синтетический, системный подход к явлениям действительности.

В работе проведен анализ понятия мышления как философской и психологической категории, рассмотрены особенности и виды мышления, основные мыслительные операции, определено понятие «стиль мышления».

Мышление является высшим познавательным процессом, оно представляет собой порождение нового знания, активную форму творческого отражения и преобразования человеком действительности. Мышление порождает такой результат, какого ни в самой действительности, ни у субъекта на данный момент времени не существует.

Стиль мышления – способ отражения и осмысления действительности и закономерностей ее развития для выработки соответствующей линии поведения и практического действия. Чтобы успешно осуществлять познавательную или практическую деятельность, необходимо усвоить нормы стиля мышления и следовать им. В естествознании (как области профессиональной деятельности) термин «стиль мышления» был впервые использован в переписке М. Борна и В. Паули при обсуждении особенностей современного познания в физике. С тех пор он применяется для обозначения нормы, системы принципов, которыми руководствуются ученые в своем подходе к исследованию и его результату.

Методологический характер научного стиля мышления подчеркивается его определениями: это – «исторически сложившаяся, устойчивая система общепринятых методологических нормативов и философских принципов, которыми руководствуются исследователи в данную эпоху»; научный стиль мышления «представляет некоторую обобщенную форму, относящуюся к методологии научного познания и выражающую сложившиеся нормы научного подхода к исследованию и его результатам». Иными словами, научный стиль мышления рассматривается как «движение предметного содержания» научной картины мира.

Во втором параграфе анализируется вопрос о развитии физического мышления, о соотношении физики и математики.

Исключительная эффективность физического образования, привела к появлению и широкому распространению афоризма «физика – это не профессия, а стиль мышления». Исследование особенностей физического мышления подразумевает анализ довольно широкого круга вопросов. Невозможно перечислить все те характерные особенности принятого в современной физике способа рассуждений, которые в совокупности и определяют его необычайную эффективность при анализе неизвестных и непонятных явлений самой различной природы.

В работе проанализированы два, тесно связанных между собой, аспекта обсуждаемой проблемы, а именно, соотношение физического и математического компонентов мышления при построении и применении физических теорий, сходство и различие фундаментальных понятий физики и математики, и требования при их применении для анализа конкретнейших явлений.

Основные тенденции развития обучения физике связаны с внутренней логикой развития физики как науки, которая характеризуется в настоящее время превращением классической диады «экспериментальная физика – теоретическая физика» в триаду «экспериментальная физики – теоретическая физика – вычислительная физика». Изучение нелинейных явлений природы наряду с поисками универсальной картины взаимодействия представляют собой генеральное направление ее развития. Методологизация и повышение научного уровня курсов физики тесно связаны с широким внедрением персонального компьютера, как в науку, так и в систему обучения.

Современная физика – часть общечеловеческой культуры, характеризующая интеллектуальный уровень развития общества и его способность противостоять различным вызовам, угрожающим самому существованию человеческой цивилизации. Среди других естественных наук физика по-прежнему сохраняет роль лидера естествознания, определяя стиль и уровень научного мышления. Именно физика наиболее полно демонстрирует способность человеческого разума к анализу незнакомой, непонятной ситуации, выявлению ее фундаментальных качественных и количественных аспектов и доведению уровня понимания до возможности теоретического предсказания характера и результатов ее развития во времени.

Как писал А. Пуанкаре, – «все законы выводятся из опыта. Но для их выражения нужен специальный язык. Обиходный язык слишком беден, кроме того, он слишком неопределенен для выражения столь богатых содержанием точных и тонких соотношений. Таково первое основание, по которому физик не может обойтись без математики; она дает ему единственный язык, на котором он в состоянии изъясняться».

Физическая картина явления и его математическое описание, по мнению Н. Бора, дополнительны: создание ясной физической картины явления требует пренебрежения деталями и уводит от математической точности. Наоборот попытка точного математического описания требует учета всех деталей, что делает общую картину более громоздкой и затрудняет ясное понимание. Это положение, характерное для физики как науки, имеет огромное значение для правильной организации процесса обучения, призванного развивать научное мышление и творческие способности обучаемых.

История науки дает немало примеров, когда с помощью одних лишь математических рассуждений и вычислений, как говорится, «на кончике пера», удавалось предсказать существование новых физических объектов, что в дальнейшем блестяще подтверждалось экспериментом. Очень характерным здесь является мнение знаменитого физика – теоретика Ф. Дайсона, начинавшего свою научную карьеру в качестве «чистого» математика: «Физик строит свои теории на математическом материале, поскольку математика позволяет ему добиться большего, чем без нее. Искусство физика состоит в умении подобрать необходимый математический материал и с его помощью построить модель того или иного явления природы. В процессе создания физической теории математическая интуиция необходима, поскольку умение «исключать все лишнее» дает свободу воображению. Но математическая интуиция таит в себе и опасность, ибо многие ситуации в науке требуют для уяснения той или иной проблемы как раз усиленного обдумывания, а не уклонения от него».

Одна из основных современных тенденций обучения физике связана с поисками адекватного математического аппарата, который с одной стороны, соответствовал бы фундаментальному принципу доступности, а с другой – обеспечивал бы возможность достижения достаточного высокого научного уровня в изложении теоретических вопросов в решении физических задач. В процессе преподавания физики особое значение имеет универсальность математического аппарата, поскольку она дает возможность рассматривать физическую ситуацию в целом, осуществлять общий подход к ее объяснению и обосновывать единство законов физики при анализе явлений реального мира.