Н. Н. Алипова, канд биол наук О. В. Левашова и канд биол наук М. С. Морозовой под редакцией акад. П. Г. Костюка москва «мир» 1996 ббк 28. 903 Ф50
Вид материала | Документы |
- Приглашение и программа разнообразие почв и биоты северной и центральной азии, 521.14kb.
- М. А. Ляшко доц., канд физ мат наук; Т. Н. Смотрова доц., канд, 2299.13kb.
- Современные направления развития физической культуры, спорта и туризма, 4493.6kb.
- Отчет о проведении Международной научной конференции-семинара «Современные методы психологии», 97.76kb.
- Образовательная программа дошкольного образования Москва «Просвещение», 5670.3kb.
- Пособие для врачей и среднего медицинского персонала Минск, 5480.63kb.
- Ббк 63. 3(0) Н72, 4378.93kb.
- Тезисы докладов, 4290.75kb.
- Строительные нормы и правила нагрузки и воздействия сниП 01. 07-85* министерство строительства, 1162.86kb.
- Ббк 63. 3(0) Н72, 5546.58kb.
21.4. Газообмен
Содержание газов в альвеолах
Вычисление содержания газов в альвеолах. Газовую смесь в альвеолах, участвующих в газообмене, прежде называли альвеолярным воздухом. Однако теперь достигнуто общее согласие в том, чтобы «воздухом» называть только смесь газов, по составу аналогичную атмосферному воздуху (FО2 = = 0,209, FCО2 ≈ 0, FN2 = 0,791). Поскольку в альвеолах содержание газов иное (в них меньше О2 и больше СО2), следует употреблять термин «альвеолярная газовая смесь».
Для того чтобы рассчитать содержание О2 и СО2 в альвеолярной газовой смеси, будем исходить из баланса их поступления и выделения. Поглощение О2 кровью (





586 ЧАСТЬ VI. ДЫХАНИЕ
или (после преобразования)

Отсюда ясно, что содержание газов в альвеолярной газовой смеси зависит как от потребления О2 и выделения СО2 в процессе метаболизма, так и от объема альвеолярной вентиляции (

Пересчет значений объемов, измеренных при разных условиях. Объем газа зависит от атмосферного давления


указывать условия, при которых измерен тот или иной объем. В физиологии дыхания выделяют следующие типы условий.
- Условия СТДС (от слов стандартная температура и давление; сухой воздух). Это стандартные физические условия; объемы газов измеряются при Τ = 273 К, Ратм = 760 мм рт. ст.,
= 0 мм рт. ст. (сухой воздух).
- Условия ТДОН (температура и давление в организме; насыщенный водяным паром воздух). Это условия, имеющие место в легких (Т = 273 К + + 37 К = 310 К;
соответствует атмосферному давлению окружающей среды и поэтому может быть различным;
равно давлению насыщенного водяного пара при 37oС, т.е. 47 мм рт. ст.).
3. Условия ТДВН (температура и давление во внешней среде; насыщенный водяным паром воздух). Это условия, которые реально имеют место в окружающей среде во время измерения («условия в спирометре»), - комнатная температура Т, атмосферное давление в момент исследования

Сводка всех этих условий приведена в табл. 21.2. Видно, что для получения давления «сухой» газовой смеси, от которого зависит объем газа, из общего давления всегда следует вычитать давление водяного пара.
Для того чтобы пересчитать объем газа с одних условий на другие, следует использовать универсальное газовое уравнение

Таблица 21.2. Характеристики условий измерения газовых объемов | ||
Условия | т, к | Р, мм рт.ст. |
СТДС | 273 | 760 |
тдон | 310 | Ратм 47 |
тдвн | Τ | Ратм ~ РΗ2Ο |
П


Искомая величина довольно существенно зависит от принятых условий. Так, если альвеолярная вентиляция в покое при условиях ТДОН составляет 5 л/мин, то в соответствии с уравнением (22) в условиях СТДС (при среднем атмосферном давлении на уровне моря

Содержание газов в альвеолярной смеси в условиях покоя. Для расчета содержания дыхательных газов в альвеолярной смеси подставим в уравнение (20) значения, соответствующие стандартным условиям. У взрослого поглощение кислорода в покое




(20,9 об.%) (табл. 21.3). Соответственно содержание газов в альвеолярной смеси составляет:


Оставшаяся часть альвеолярной газовой смеси приходится на азот и присутствующие в очень небольшом количестве благородные газы.
Анализ альвеолярной газовой смеси. Одна из первых трудностей, с которыми приходится сталкиваться при определении содержания газов в альвеолах, связана с получением проб альвеолярной газовой смеси. При выдохе из воздухоносных путей сначала удаляется воздух мертвого пространства и лишь после этого начинает выходить воздух из альвеол. Однако даже к концу выдоха состав выдыхаемой смеси постоянно претерпевает небольшие изменения, обусловленные тем, что в альвеолах продолжается газообмен. В связи с этим были разработаны
ГЛАВА 21. ЛЕГОЧНОЕ ДЫХАНИЕ 587
Таблица 21.3. Содержание (F) и парциальное давление (Р) дыхательных газов во вдыхаемом воздухе и альвеолярной и выдыхаемой газовых смесях при спокойном дыхании (на высоте уровня моря) | |||
F | | Ρ | |
О2 | СО2 | О2 | СО2 |
Вдыхаемый воздух 0,209 | 0,0003 | 150 мм рт. ст. (20 кПа) | 0,2 мм рт. ст. (0,03 кПа) |
Альвеолярная смесь 0.14 | 0.056 | 100 мм рт. ст. (13,3 кПа) | 40 мм рт. ст. (5,3 кПа) |
Выдыхаемая смесь 0.16 | 0,04 | 114 мм рт. ст. (15,2 кПа) | 29 мм рт. ст. (3,9 кПа) |
специальные устройства, позволяющие при помощи механических или электронных приспособлений производить забор последней порции выдыхаемого воздуха при каждом дыхательном цикле [3].
После получения пробы альвеолярной газовой смеси можно с помощью специальной аппаратуры определить содержание в ней различных газов. При использовании метода Шоландера химически абсорбируют последовательно О2 и СО2. После каждой операции измеряют, на сколько уменьшился объем газовой смеси. Разница в объемах равна объему абсорбированного газа [43].
Существуют газоанализаторы, позволяющие непрерывно регистрировать содержание газов в выдыхаемой смеси. Принцип подобных приборов, измеряющих концентрацию СО2, основан на поглощении этим газом инфракрасных лучей; измерение концентрации О2 основано на парамагнитных свойствах кислорода. Для определения содержания обоих газов используют также массспектрометры. Преимущество этих методов заключается в том, что благодаря непрерывной записи содержание газов в любой момент времени можно определить непосредственно по кривой, так что не требуется производить отбор серийных проб из альвеол. На рис. 21.20 в качестве примера приведена кривая концентрации СО2 в выдыхаемом воздухе в ходе двух дыхательных циклов, полученная
![]() |
t, с Рис. 21.20. Запись концентрации СО2 в воздухе около рта исследуемого при вдохе и выдохе, произведенная методом регистрации поглощения инфракрасных лучей. «Альвеолярное плато»-часть кривой, соответствующая прохождению через датчик альвеолярной порции выдыхаемого объема |
путем регистрации поглощения инфракрасных лучей. Часть кривой, обозначенная как «альвеолярное плато», соответствует альвеолярной порции экспираторного объема.
Парциальные давления дыхательных газов
Парциальные давления газов в атмосферном воздухе. Согласно закону Дальтона, парциальное давление (напряжение) каждого газа в смеси (Ρг) пропорционально его доле от общего объема, т. е. его фракции (Fr). Применяя этот закон к дыхательным газам, следует помнить, что как атмосферный воздух, так и альвеолярная газовая смесь содержат не только О2, СО2, N2 и благородные газы, но также водяной пар, имеющий некое парциальное давление РН2О. Поскольку фракции газов приводятся для «сухой» смеси, в уравнении для закона Дальтона из общего давления (атмосферное давление Ратм) следует вычитать давление водяного пара


Если подставить в это уравнение содержание О2 и СО2 в атмосферном воздухе (табл. 21.3) Рн о = = 47 мм рт. ст. (в легких), то можно вычислить, что парциальные давления дыхательных газов на уровне моря составляют

Парциальные давления газов в альвеолярной газовой смеси. Поскольку газообмен в легких идет в направлении градиентов парциальных давлений, именно в единицах давления обычно выражают соотношение О2 и СО2 в альвеолярной смеси. Подставляя в уравнение (20) значения парциальных давлений из уравнения (23) при РН2О = 47 мм рт. ст. и делая поправку на условия измерения с помощью уравнения (22), получаем

588 часть VI. дыхание

С помощью этих так называемых уравнений альвеолярных газов можно рассчитать парциальные давления дыхательных газов в альвеолярной смеси.

Приведенные значения характерны для здорового взрослого человека. Следует, однако, помнить, что это средние величины: существуют как небольшие временные колебания парциальных давлений газов в альвеолах, связанные с периодичностью поступления свежего воздуха в альвеолярное пространство, так и незначительные локальные отклонения, обусловленные неравномерной вентиляцией и перфузией различных участков легких (см. ниже).
Как следует из уравнений (24), парциальные давления газов в альвеолах при данных значениях

изменениями. Количественная зависимость между парциальными давлениями газов в альвеолах и уровнем альвеолярной вентиляции представлена на рис. 21.21.
Влияние вентиляционио-перфузнонного отношения [34, 37, 60]. Для осуществления газообмена кровь должна доставлять к альвеолам кислород и уносить от них углекислый газ. Вследствие этого поглоще-

Типы вентиляции. Характер вентиляции легких может меняться вследствие самых разных причин. Дыхание усиливается при работе, изменении метаболических потребностей организма и патологических состояниях. Можно произвольно усилить дыхание. Снижение вентиляции также может либо быть произвольным, либо наступать в результате
![]() |
![]() |
действия регуляторных или патологических факторов. В прошлом для обозначения различных типов вентиляции предлагался целый ряд терминов, однако их четкой классификации не существовало. Недавно была сделана попытка разработать более точную терминологию для типов вентиляции, основанную на учете парциальных давлений газов в альвеолах. Выделены следующие типы вентиляции.
- Нормовентиляция: нормальная вентиляция, при которой парциальное давление СО2 в альвеолах поддерживается на уровне около 40 мм рт. ст. (5,3 кПа).
- Гипервентиляция: усиленная вентиляция, превышающая метаболические потребности организма (
< 40 мм рт. ст.).
- Гиповентиляция: пониженная вентиляция относительно метаболических потребностей организма (
> 40 мм рт. ст.).
- Повышеннаявентиляция: любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя (например, при мышечной работе) независимо от парциального давления газов в альвеолах.
- Эупноэ: нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.
ГЛАВА 21. ЛЕГОЧНОЕ ДЫХАНИЕ 589
- Гиперпноэ: увеличение глубины дыхания независимо от того, повышена ли при этом частота дыхательных движений или нет.
- Тахипноэ: увеличение частоты дыхания.
- Брадипноэ: снижение частоты дыхания.
- Апноэ: остановка дыхания, обусловленная главным образом отсутствием физиологической стимуляции дыхательного центра (уменьшение напряжения СОг в артериальной крови).
- Диспноэ (одышка): неприятное субъективное ощущение недостаточности дыхания или затрудненности дыхания.
- Ортопноэ: выраженная одышка, связанная с застоем крови в легочных капиллярах в результате недостаточности левого сердца. В горизонтальном положении это состояние усугубляется, поэтому таким больным тяжело лежать.
- Асфиксия: остановка или угнетение дыхания, связанные главным образом с параличом дыхательных центров. Газообмен при этом резко нарушен (наблюдается гипоксия и гиперкапния).
Диффузия дыхательных газов
Закономерности газообмена в легких. Парциальное давление кислорода в альвеолах (100 мм рт. ст.) значительно выше, чем напряжение Ο2 1) в венозной крови, поступающей в капилляры легких (40 мм рт. ст.). Градиент парциального давления СО2 имеет противоположное направление (46 мм рт. ст. в начале легочных капилляров, 40 мм рт. ст. в альвеолах). Эти градиенты давлений служат движущей силой диффузии О2 и СО2, т. е. газообмена в легких. Согласно первому закону диффузии Фика, диффузионный поток Μ (количество вещества, проходящее через некий слой площадью А и толщиной h за единицу времени) прямо пропорционален эффективному градиенту концентрации вещества АС:

Коэффициент диффузии D зависит от свойств диффузионной среды, природы диффундирующего вещества и температуры. В случае если речь идет о диффузии растворенного газа через слой жидкости, вместо концентрации С этого газа можно подставить его парциальное давление Р, так как две эти величины пропорциональны друг другу (с. 587):

1) Парциальное давление газа в жидкости часто называют напряжением; в дальнейшем мы будем использовать именно этот термин.- Прим. перев.
Коэффициент К называют коэффициентом диффузии Крога или диффузионной проводимостью [45, 46]. Он отличается от коэффициента D как численным значением, так и размерностью. При диффузии в легких КСО2 в 23 раза больше, чем КО2; иными словами, при прочих равных условиях СО2 диффундирует через определенный слой среды в 23 раза быстрее, чем О2. Именно поэтому обмен СО2 в легких происходит достаточно полно, несмотря на небольшой градиент парциального давления этого газа.
В соответствии с уравнением (26), для того чтобы обмен путем диффузии был достаточно эффективным, обменная поверхность А должна быть большой, а диффузионное расстояние h-маленьким. Диффузионный барьер в легких полностью отвечает обоим этим условиям. Общая поверхность альвеол по подсчетам составляет около 80 м2, а диффузионное расстояние-порядка нескольких микрометров (рис. 21.22).
Как видно из рис. 21.22, наибольшее диффузионное расстояние (т.е. наиболее существенный диффузионный барьер) приходится на внутреннюю среду эритроцита. Однако диффузия кислорода как газа в эритроците дополняется другими транспортными процессами. Как только молекула О2 поступает в эритроцит, она соединяется с гемоглобином (Hb), переводя его в форму оксигемоглобина (НbО2; с. 605). В дальнейшем молекулы НbО2 диффундируют к центру эритроцита (так называемая облегченная диффузия), ускоряя тем самым перенос О2.
Молекулы СО2 диффундируют по тому же пути, но в обратном направлении (от эритроцита к альвеолярному пространству). Однако диффузия становится возможной лишь после высвобождения СО2 из тех соединений, в которых он химически связан (с. 615).
Диффузионная способность легких. Время, в течение которого возможна диффузия при прохождении эритроцита через легочные капилляры, относительно невелико - около 0,3 с [46]. Однако этого времени контакта вполне достаточно, чтобы напряжения дыхательных газов в крови и в альвеолах практически сравнялись. Динамика диффузии кислорода представлена на рис. 21.23. Видно, что величина напряжения О2 в капиллярной крови вначале быстро, а затем все медленнее приближается к его величине в альвеолах. Подобный характер изменений напряжения кислорода во времени вытекает из закона диффузии Фика. В начальном отрезке капилляра градиент парциального давления О2 между альвеолярным пространством и кровью велик, затем по мере прохождения эритроцита через капилляр он становится все меньше, поэтому скорость диффузии постепенно снижается. Напряжение кислорода в крови, поступающей к легким, составляет 40 мм рт. ст., а в оттекающей крови-100 мм рт. ст. Аналогичным образом величина напряжения СО2 в крови постепенно дости-
590 ЧАСТЬ VI. ДЫХАНИЕ
![]() |
Рис. 21.22. Пути транспорта дыхательных газов в процессе легочного газообмена |
гает его величины в альвеолярном пространстве: в начале легочных капилляров напряжение составляет 46 мм рт. ст., а по мере диффузии этого газа снижается до 40 мм рт. ст. Таким образом, можно считать, что в легких здорового человека парциальные давления дыхательных газов в крови становятся практически равными таковым в альвеолах.
Исходя из закона диффузии Фика [уравнение (26)], можно получить показатель, характеризующий способность легких в целом к осуществлению
![]() |
Рис. 21.23. Увеличение напряжения О2 в эритроцитах во время прохождения их через легочные капилляры. Вверху -поглощение О2 эритроцитами (кислород изображен красными точками); внизу -кривая зависимости напряжения О2 в капилляре ![]() ![]() ![]() ![]() нвпряжения О2 в капилляре; t- время диффузионного контакта |
диффузии. Расчет этого показателя основан на том, что общее количество кислорода, диффундирующее в кровь, должно быть равно количеству поглощенного кислорода


Коэффициент Dл называется диффузионной способностью легких для кислорода. Величина

Для того чтобы вычислить диффузионную способность легких для О2. необходимо измерить поглощение кислорода (

кислорода (


У здорового взрослого человека в покое поглощение кислорода


ГЛАВА 21. ЛЕГОЧНОЕ ДЫХАНИЕ 591
о том, насколько величина напряжения О2 в крови приближается к его величине в альвеолах. Диффузионную способность легких, как и альвеолярную вентиляцию, следует рассматривать в отношении к легочной перфузии


величины указывает на нарушение диффузии.