Исследование по результатам решенных задач «Копилка методов и советов Мода Исследование по теме «Техника чтения школьников» Наибольшее и наименьшее значение. Размах
Вид материала | Исследование |
Линейный тренд температуры 11. Список литературы. 12.1 Словарь для тех, кто хочет знать больше Среднее значение или арифметическое среднее Среднее значение Наибольшее и наименьшее значения функции |
- Исследование функций на монотонность и экстремумы. Построение графиков, 13.79kb.
- Лекция 15. Определённый интеграл, 71.1kb.
- Е. В. Чепин Московский инженерно-физический институт (государственный университет), 32.43kb.
- Исследование методов и методик развития математических способностей младших школьников, 724.06kb.
- Исследование электрофизических свойств сельскохозяйственных продуктов и материалов, 34.96kb.
- Исследование методов приема сигналов данных, 68.73kb.
- Л. В. Шипова Саратов, сгу им. Н. Г. Чернышевского Исследование, 107.95kb.
- «Исследование и сопоставительный анализ численных методов решения задач не линейного, 321.81kb.
- В. А. Каверина «Картины мира» школьников. Итоги исследования. Исследование, 82.72kb.
- Иванов Петр Алексеевич ввт-406 тудент группа т исследование, 71.44kb.
- Линейный тренд температуры
Средняя по регионам РФ аномалия среднегодовой температуры воздуха
(отклонение от средней температуры базового периода)
Жирная кривая показывает 11-летнее скользящее среднее.
Показан линейный тренд температуры.
ссылка скрыта
9.3. Анализ отклонения прибыли
- При анализе валовой прибыли изучаются причины, вызывающие ее изменение, соответствующие факторы отражаются в отчете и позволяют принять корректирующие меры.
Причины отклонения прибыли:
- Изменения в цене продажи и в затратах на единицу продукции.
- Изменения в объеме продаж.
- Изменения в ассортименте продаж.
- Данные для согласования фактических операций с бюджетными значениями получаются на основе анализа изменений между фактическими и бюджетными операциями за текущий год, между фактическими операциями предыдущего года и соответствующими операциями текущего года. Могут рассматриваться изменения в валовой прибыли всей компании или выбранной продуктовой линии.
- ссылка скрыта
9.4. Резюме:
Оценка «здоровья здорового человека»
Показатели ВРС у здоровых людей. Оценка «здоровья здорового человека».
- Суммируются собственные наблюдения и результаты ряда работ, которые позволяют следующим образом сформулировать основные параметры ВРС, характерные для здорового человека. В таблицах 5-2 - 5-4 приведены показатели математического анализа ВРС, полученные при обследовании практически здоровых лиц молодого возраста. Учитывая, что распределение показателей ВРС отличается от нормального, все данные представлены в виде медианы и интерквантильного размаха. Интерквантильный размах указывается в виде 25% и 75% перцентилей.
- ссылка скрыта
10. Заключение
Работая над темой реферата,
«Статистические характеристики на уроках алгебры», мы
- изучили учебные пособия;
- познакомились с материалами по нашей теме в Интернете, выполнили их отбор, проанализировали и обобщили;
- заключили, что статистика - огромное поле смысложизненных ориентиров;
- научились решать и создавать статистические задачи,
- провели социологические исследования в школе;
- познакомились с технологией исследования в математике, оформлять выводы и результаты;
- научились наглядно представлять результаты исследования в виде таблиц, диаграмм;
- провели презентацию реферата Статистические характеристики на уроке алгебры» на родительском собрании «Математика для родителей»;
- создали фото - вернисаж с уроков алгебры по изучению статистических характеристик, выполненный на компьютере;
- познакомили учащихся нашего класса с результатами исследования в статистике школы;
- подготовили компьютерную презентацию реферата, сделанную в редакторе Microsoft Power Point;
- выявили удивительное: неожиданно многое в жизни человека описывается статистическими характеристиками, да как интересно;
- поняли, что изучать статистику необходимо и это нам пригодиться при обучении в вузе, а так же в выборе профессии;
- сделали вывод из приложений и словаря, которые мы посмотрели в сети Интернет, что статистика тесно связана с непростыми математическими расчетами, которые нам еще предстоит преодолеть,
- думаем, что знания, полученные при работе над данной темой, пригодятся нам в дальнейшей учебе и в жизни.
- научились работать в команде, распределять обязанности, работать в сотрудничестве.
Наше математическое исследование – это путешествие в глубины неизвестного и интересного в статистике. Задавая вопросы один за другим, главное не останавливаться, мы определяли направление пути исследования. Путей было много, направление выбирали сами. Мы открыли тайны большой и интересной науки статистики и математики.
Исследование наше не заканчивается. Возникают новые вопросы, есть желание вновь открывать научные сокровища и глубины математики.
11. Список литературы.
1) Алгебра : учеб. для 7 кл. общеобразоват. учреждений / (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова); под ред. С. А. Теляковского. – 16-е изд. – М. : Просвещение,2007. – 240 с. : ил. – ISBN 978-5-09-016309-5
2) Теория вероятности и статистика / Ю. Н. Тюрин, А. А. Макаров, И. Р. Высоцкий, И.В. Ященко. – М.: МЦНМО: АО «Московские учебники», 2004.-256с., ил. ISBN 5-94057-161-1
3) ссылка скрыта. ссылка скрыта. Учебник. М.: Издательство "Экзамен", 2002. Глава 3. Основы теории измерений 3.2. Инвариантные алгоритмы и средние величины
4) ссылка скрыта [Электронный ресурс] / Медиана –16.02.2009 – Режим доступа : ссылка скрыта
5) Википедия – свободная энциклопедия [Электронный ресурс] /Медиана– Электрон. дан. –16.02.2009. – Режим доступа: ссылка скрыта
6)Информационно-развлекательная социальная сеть ссылка скрыта
7) История возникновения медианы ссылка скрыта
8) Наибольшее и наименьшее значения функции ссылка скрыта
9) Словари и энциклопедии по Академики ссылка скрыта
10)Словарь. Яндекс. Размах. ссылка скрыта
11) Википедия – свободная энциклопедия [Электронный ресурс] Среднее значение ссылка скрыта
12)Викизнание ссылка скрыта
12. Приложение
12.1 Словарь для тех, кто хочет знать больше
Взгляд в свое будущее
Среднее значение — числовая характеристика множества чисел или функций; — некоторое число, заключённое между наименьшим и наибольшим из их значений. (ссылка скрыта)
Среднее значение или арифметическое среднее наиболее широко используется в статистике. Это одно значение может использоваться для представления некоторого набора данных. В этом случае среднее значение можно назвать "центром тяжести" этого набора. Среднее значение вычисляется следующим образом: складываются все значения выборки и результат делится на общее число значений. Например, сумма набора значений. (ссылка скрыта)
Среднее значение — числовая характеристика множества чисел или числовых функций; — некоторое число, заключенное между наименьшим и наибольшим из их значений; а также множественно – значная характеристика совокупности множеств или сет-функций; — некоторое множество, содержащее пересечение и содержащееся в объединении этих множеств.
(ссылка скрыта)
Медиана— в статистике - значение варьирующего признака, которое делит ряд распределения на две равные части по объему частот или частостей. Сумма абсолютных величин линейных отклонений от медианы минимальна.…
ссылка скрыта
Медиана - (термин был впервые введен Гальтоном, 1882) выборки - это значение, которое разбивает выборку на две равные части (при ранжировании). Половина наблюдений лежит ниже медианы, и половина наблюдений лежит выше медианы. Если число наблюдений в выборке нечетно, то медиана вычисляется как среднее двух средних значений.
МЕДИАНА - один из показателей центра распределения для порядковых и количественных переменных обозначается Ме. Представляет собой значение переменной, которое делит выборку пополам таким образом, чтобы для 50% объектов из выборки значения переменной не превосходили Ме, а для других 50% объектов - были не меньше, чем Ме.
Для небольшой выборки М. может быть найдена как середина ряда упорядоченных значений переменной (указываются все повторяющиеся значения). Например, в ряду из 9 значений 27 29 30 30 32 37 46 50 52 М. будет число 32, расположенное в центре ряда (Ме = 32).
Для выборки значительного размера М. можно найти как значение хi, соответствующее накопленной частоте Fi = 50% (см. Распределение частот). Если переменная является дискретной и ее значения повторяются, М. может быть найдена только приблизительно, по значению накопленной частоты, наиболее близкому к 50%. Например, при объеме выборки n = 120 М. будет соответствовать накопленная частота Fi = n/2 = 60. В приведенном ниже распределении наиболее близким к 60 значением накопленной частоты является F2 = 45, поэтому М. в данном случае будет соответствующее ей значение x2 = 2. Таким образом, Me ≈ 2 (балла).
Наибольшее и наименьшее значения функции - понятия математического анализа. Значение, принимаемое функцией в некоторой точке множества, на котором эта функция задана, называется наибольшим (наименьшим) на этом множестве, если ни в какой другой точке функция не имеет большего (меньшего) значения. (ссылка скрыта)
Наибольшее и наименьшее значения функции, понятия математического анализа. Значение, принимаемое функцией в некоторой точке множества, на котором эта функция задана, называется наибольшим (наименьшим) на этом множестве, если ни в какой другой точке множества функция не имеет большего (меньшего) значения. Н. и н. з. ф. по сравнению с её значениями во всех достаточно близких точках называются экстремумами (соответственно максимумами и минимумами) функции. Н. и н. з. ф., заданной на отрезке, могут достигаться либо в точках, где производная равна нулю, либо в точках, где она не существует, либо на концах отрезка. Непрерывная функция, заданная на отрезке, обязательно достигает на нём наибольшего и наименьшего значений; если же непрерывную функцию рассматривать на интервале (т. е. отрезке с исключенными концами), то среди её значений на этом интервале может не оказаться наибольшего или наименьшего. Например, функция у = x, заданная на отрезке [0; 1], достигает наибольшего и наименьшего значений соответственно при x = 1 и x = 0 (т. е. на концах отрезка); если же рассматривать эту функцию на интервале (0; 1), то среди её значений на этом интервале нет ни наибольшего, ни наименьшего, так как для каждого x0 всегда найдётся точка этого интервала, лежащая правее (левее) x0, и такая, что значение функции в этой точке будет больше (соответственно меньше), чем в точке x0. Аналогичные утверждения справедливы для функций многих переменных. (ссылка скрыта)
Дисперсия
(от лат. dispersio — рассеяние), в математической статистике и теории вероятностей, наиболее употребительная мера рассеивания, т. е. отклонения от среднего. В статистическом понимании Д.
есть среднее арифметическое из квадратов отклонений величин xi от их среднего арифметического