Копьева Наталья Владимировна, учитель математики Мегион, 2009 год пояснительная записка

Вид материалаПояснительная записка
Требования к уровнюподготовки выпускников
Алгебра уметь
Нормы оценки
Отметка «4» ставится, если
Отметка «3» ставится, если
Отметка «2» ставится, если
Отметка «1» ставится, если
Ответ оценивается отметкой «4»
Отметка «1» ставится, если
Подобный материал:
1   2   3

ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ


В результате изучения математики ученик должен

знать/понимать
  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Алгебра

уметь
  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
  • решать линейные и квадратные неравенства с одной переменной и их системы;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • изображать числа точками на координатной прямой;
  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
  • описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

интерпретации графиков реальных зависимостей между величинами;


Шкала оценивания:

Критерии оценивания знаний, умений и навыков

обучающихся по математике.

(Согласно Методическому письму «Направления работы учителей математики по исполнению единых требований преподавания предмета на современном этапе развития школы»)

Для оценки достижений учащихся применяется пятибалльная система оценивания.

Нормы оценки:


1. Оценка письменных контрольных работ обучающихся по математике.


Ответ оценивается отметкой «5», если:

1) работа выполнена полностью;

2) в логических рассуждениях и обосновании решения нет пробелов и ошибок;

3) в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).


Отметка «4» ставится, если:

1) работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

2)допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).


Отметка «3» ставится, если:

1) допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.


Отметка «2» ставится, если:

1) допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.


Отметка «1» ставится, если:

1)работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.


2.Оценка устных ответов обучающихся по математике


Ответ оценивается отметкой «5», если ученик:
  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
  • отвечал самостоятельно, без наводящих вопросов учителя;
  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.


Ответ оценивается отметкой «4»,

если удовлетворяет в основном требованиям на оценку «5»,

но при этом имеет один из недостатков:
  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.


Отметка «3» ставится в следующих случаях:
  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);
  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.



Отметка «2» ставится в следующих случаях:
  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминуологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


Отметка «1» ставится, если:
  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.



Пояснительная записка.

Календарно – тематический план по Алгебре в 7 классе составлен на основе Концепции Российского образования и программы «Математика 5 – 11 класс» для общеобразовательных школ, гимназий, лицеев по математике, рекомендованную министерством образования РФ. (Составители программы: А.Г. Мордкович, И. И. Зубарева, 2009г.)

Ведущим аспектом изучения курса является математическая модель – это то, что остается от реального процесса, если отвлечься от его материальной сути. Математические модели описываются математическим языком. Основная функция математического языка – организующая: таблицы, схемы, графики, алгоритмы, правила вывода, способы логически правильных рассуждений. Особая цель математического образования – развитие речи на уроках математики. В наше прагматичное время культурный человек должен уметь излагать свои мысли четко, кратко, раскладывая «по полочкам», умея за ограниченное время сформулировать главное, отсечь несущественное. Этому он учится в школе прежде всего на уроках математики.

В центре изучения рассматриваются темы: «Математический язык. Математическая модель», «Линейная функция», «Системы двух линейных уравнений с двумя переменными», «Степень с натуральным показателем», «Одночлены. Операции над одночленами», «Многочлены. Арифметические операции над многочленами», «Разложение многочленов на множители», «Функция у=х2».

Количество часов, предусмотренное в программе, общее -120 часов, из них: теоретических – 114 часов, контрольных работ – 6 часов. Программа используется без корректировки.

Для подтверждения успешности обучения ученика на уроках будут использованы следующие виды работ: работа в группах, работа в парах, индивидуальная и дифференцированная работа, составление таблиц, схем, подготовка сообщений, докладов, рефератов, сравнение, анализ, работа с различными источниками информации. А так же виды уроков: урок – лекция, урок – практикум, урок – семинар, урок индивидуальной самостоятельной работы, урок самостоятельной работы в группах, урок контроля и т. д.

Основные цели и задачи математического курса в 7 классе, которые мы стремимся реализовать, заключаются в следующем: содействовать формированию культурного человека, умеющего мыслить, понимающего идеологию математического моделирования реальных процессов, владеющего математическим языком не как языком общения, а как языком организующим деятельность, умеющего самостоятельно добывать информацию и использоваться ею на практике, владеющего литературной речью и умеющего в случае необходимости простроить ее на законах математической речи.


Программное и учебно - методическое оснащение учебного плана


класс

Количество часов

Всего часов

(теоретических/практических)

Реквизиты программы

УМК ученика

УМК учителя

7

I четверть – 5 часов

II - IV четверть – 3 часа


120

114/6

Рекомендована ДО программ и стандартов общего образования Федерального агентства по образованию А. Г. Мордкович. (Составители программы: А.Г. Мордкович, И. И. Зубарева, 2009г.)

  1. Мордкович А. Г.

Алгебра. 7 кл.: В двух частях. Ч. 1: учебник для общеобразоват. учреждений. – 8-е изд.-м.: Мнемозина, 2005.-160с.: ил. ISBN 46-00449-1
  1. Мордкович А. Г.

Алгебра. 7 кл.: В двух частях. Ч.2: Задачник для общеобразоват. учреждений/ А. Г. Мордкович, Т. Н. мишустина, Е. Е. тульчинская.-8-е изд. – М.: мнемозина, 2005.-160 с.: ил. ISBN 5-346-00450-5

.
  1. Мордкович А. Г.

Алгебра. 7 кл.: В двух частях. Ч. 1: учебник для общеобразоват. учреждений. – 8-е изд.-м.: Мнемозина, 2005.-160с.: ил. ISBN 46-00449-1
  1. Мордкович А. Г.

Алгебра. 7 кл.: В двух частях. Ч.2: Задачник для общеобразоват. учреждений/ А. Г. Мордкович, Т. Н. Мишустина, Е. Е. тульчинская.-8-е изд. – М.: Мнемозина, 2005.-160 с.: ил. ISBN 5-346-00450-5
  1. Комисарова, И. В.

Поурочное планирование по алгебре: 7 класс: к учебникам А. Г. Мордковича «алгебра. 7 класс» 2004-2006; 2007: учебно-методическое пособие/ И. В. Комисарова, /Е. М. Ключникова. - М.: Издательство «Экзамен», 2008.-508, [4] с. (серия «Учебно-методический комплект») ISBN 978-5-377-00653-4
  1. Попова, М. А.

Контрольные и самостоятельные работы по алгебре: 7 класс: к учебнику А. Г. Мордковича и др. «Алгебра. 7 класс»/ М. А. Попова.- М.: Издательство «Экзамен», 2006.-63, [1] с. – (серия «Учебно-методический комплект») ISBN 5-472-01352-6